
BAS Benchmark Models

Nathalie Cauchi, Alessandro Abate

Department of Computer Science, University of Oxford

Overview

The BASBenchmark script repository contains the

main files needed to (i) construct and perform simu-

lation a model for a required BAS setup based on the

components making it up, (ii) perform simulation of

the whole BAS setup described in [2] and (iii) simu-

late the models described within each case study. One

can easily add more components to the benchmark

and compositionally simulate different BAS struc-

tures. The core file to build the underlying compo-

nent models is called createModel.m. This file allows

you to build symbolic models based on their type.

Models can be either (i) linear time invariant or (ii)

bilinear time invariant and either (i) deterministic or

(ii) stochastic and all can have additive disturbances.

These can all be defined using the class createModel

where one inputs the continuous time system matri-

ces of the underlying model. The class automatically

performs discretisation of the specified models.

A high-level description of the BASBenchmark

code structure is given in Figure 1. The benchmarks

follow the form:

1. Load parameters: The used parameters are given

within the file BASParameters.m. Unknown pa-

rameters where identified using data collected

within the BAS setup at the Department of

Computer Science. The user may opt to up-

date/add parameters as needed. We can also

provide data from our set-up for performing sys-

tem identification of the parameters.

Figure 1: High-level structure of benchmark mod-
els structure. Green boxes are tasks which can be
directly performed using the provided scripts. The
orange boxes can be performed by performing adap-
tation to the current scripts.

2. Select components: Within the script reposi-

tory, one will find scripts named in the form

of XXModel.m, where XX corresponds to the spe-

cific component. These files are used to instanti-

ate models representing the components. Based

on the BAS setup one wishes to construct one

should define a model for each of the BAS com-

ponent (cf. Lines 17 - 26 in WholeBAS setup.m).

This builds a symbolic model for each of the com-

ponents.

Note, more components can be added by

defining a new XXModel.m file and use the

createModel.m file to compose the symbolic

model for that specific component.

1



BAS Benchmark Models

3. Simulate for given time horizon: Once the mod-

els for the individual components are defined,

one should define the input signals and the

control strategy to be used. The BAS set-

up is then simulated by connecting the differ-

ent components based on input-output to get

the whole BAS setup and (1) for static mod-

els simply provide the inputs to the correspond-

ing component model or (2) for dynamical mod-

els call the runModel function found within the

createModel class. This function simulates the

dynamic models given the current state, inputs,

disturbances and time horizon. Finally, once all

the simulation is performed the trajectories are

plotted by calling the plotFigures.m function.

Once, the components are selected and the whole

model is constructed by connecting the input-

outputs, one can also perform verification tasks such

as reachability analysis or policy synthesis. These

tasks are currently performed external to the pro-

vided benchmarks. In the next subsections, we’ll give

a brief overview of how one can use these models to

perform verification or synthesis tasks.

Verification & Synthesis

We consider reachability analysis as the main verifica-

tion task to be performed. For deterministic models

this task can be performed using either Axelerator [1]

or SpaceEx [3], while for stochastic models proba-

bilistic reachability analysis can be performed using

FAUST2 [4] (can also be used to perform synthesis

of control policies). To interface with Axelerator one

needs to convert the matrices of the whole model into

polyhedral sets where constrains on the states of the

model correspond to actual physical feasible values

the states can undertake. Once the dynamics are

defined, the model can be directly fed into Axeler-

ator. One should note that Axelerator only works

with discrete-time linear time invariant models. On

the other hand, to interface with SpaceEx one needs

to convert the model in sX format (similar to XML)

and write the original continuous time models within

the flow field. An example of a model in sX format

is given in CaseStudy3 Hybrid.m. SpaceEx can cater

for hybrid deterministic models where the underlying

dynamics are described in continuous time.

In the case of stochastic models, the generated BAS

model needs to first be converted into an equiva-

lent general Markov decision process. This results in

defining a stochastic transition kernel for each time

step, which is then fed into FAUST2 such that ei-

ther synthesis or probabilistic reachability can be per-

formed.

References

[1] Dario Cattaruzza, Alessandro Abate, Peter

Schrammel, and Daniel Kroening. Unbounded-

time analysis of guarded LTI systems with in-

puts by abstract acceleration. In International On

Static Analysis, pages 312–331. Springer, 2015.

[2] Nathalie Cauchi and Alessandro Abate. Bench-

marks for cyber-physical systems: A modular

model library for buildings automation. In Inter-

national Conference on Cyber-Physical Systems,

2018. Under review.

[3] Goran Frehse, Colas Le Guernic, Alexandre

Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebel-

tel, Rodolfo Ripado, Antoine Girard, Thao Dang,

and Oded Maler. SpaceEx: Scalable verification

of hybrid systems. In Computer Aided Verifica-

tion, pages 379–395. Springer, 2011.

[4] Sadegh Esmaeil Zadeh Soudjani, Caspar

Gevaerts, and Alessandro Abate. Faust 2:

Formal Abstractions of Uncountable-STate

STochastic processes. In TACAS, volume 15,

pages 272–286, 2015.

2 of 2


