
ASSURANCE MONITORING IN 
LEARNING-ENABLED CYBER-
PHYSICAL SYSTEMS 

XENOFON KOUTSOUKOS

INSTITUTE FOR SOFTWARE INTEGRATED SYSTEMS

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

VANDERBILT UNIVERSITY
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Assurance monitoring based on inductive 
conformal anomaly detection
• Variational autoencoder (VAE)
• VAE for regression
• Adversarial Autoencoder (AAE)
• Deep support vector description (SVDD)

Evaluation
• Airport image dataset
• Self-driving simulator and open datasets
• Autonomous underwater vehicle



NOVELTY DETECTION IN HIGH-
DIMENSIONAL TIME SERIES

• In autonomous systems, inputs are high-dimensional sensor measurements (e.g., 
camera, LiDAR) and arrive one by one based on the sampling rate of the sensors 

• After observing each input, inductive conformal anomaly detection is used to quantify 
the degree to which the input disagrees with the training data

• Main idea: Train an appropriate neural network architecture which can be used for 
detection in real-time

• Use multiple examples sampled from a learn representation from the input 
distribution 

• A nonconformity measure (NCM) to evaluate the degree to which a new example disagrees 
from the distribution of the training data

• Compute empirical p-values used for statistical significance testing
• Perform a randomness test to compute an assurance measure using a martingale 

process of the p-values
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VAE-BASED NONCONFORMITY MEASURE
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Given an input example at time t, the encoder portion of the VAE is used to 
approximate the posterior distribution of the latent space
• Typically, the posterior of the latent space is approximated by a Gaussian distribution

Sampling from the posterior generates multiple encodings so that the decoder is 
exposed to a range of variations of the input example
• An in-distribution input should be reconstructed with a relatively small reconstruction error. 

• Conversely, an out-of-distribution input will likely have a larger error. 

The reconstruction error is a good measure of the strangeness of the input 
relative to the training set and it is used as the nonconformity measure
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small p-values indicating an out-of-distribution input. In the
latter case, the martingale will grow and can be used as an
input to a detector that raises alarms.

In the following, we describe how VAE and SVDD are
used to compute the nonconformity measure and detect out-of
distribution examples. Although the idea is similar, the two
architectures lead to different algorithms for computing the
sequence of p-values and realizing the detector.

B. VAE-based Out-of-distribution Detection

1) Nonconformity measure and p-values: Given an input
example zt at time t, the encoder portion of a VAE is used
to approximate the posterior distribution of the latent space
and sample multiple points xk from the posterior that are
used as input to the decoder portion in order to and generate
new examples z01, . . . , z0N . Typically, the posterior of the latent
space is approximated by a Gaussian distribution. Sampling
from the posterior generates encodings xk so that the decoder
is exposed to a range of variations of the input example and
outputs z01, . . . , z

0
N which satisfy the exchangeability assump-

tion.
An in-distribution input zt should be reconstructed with

a relatively small reconstruction error. Conversely, an out-
of-distribution input will likely have a larger error. The re-
construction error is a good evaluation of the strangeness of
the input relative to the training set and it is used as the
nonconformity measure. We use the squared error between
the input example zt and each generated output example z0k
as the nonconformity measure defined as

↵0
k = AVAE(zt, z

0
k) = ||zt � z0k||2. (3)

The p-value pk for the input z0k is computed as the fraction
of calibration examples that have nonconformity scores greater
than or equal to ↵0

k using Eq. (1). Since the examples
z01, . . . , z

0
N satisfy the exchangeability assumption, the pk

values are independent and uniformly distributed in [0, 1] (see
discussion in Section III) and the martingale method can be
used to test if z01, . . . , z0N , and therefore zt, are generated from
the probability distribution of the training data.

2) Martingale test: At runtime, for every new input exam-
ple zt received by the perception or end-to-end control LEC
at time t we compute the martingale

Mt =

Z 1

0
M ✏

t d✏ =

Z 1

0

NY

k=1

✏p✏�1
k d✏.

Mt will have a large value if there are many small p-values
in the sequence pk which will indicate an out-of-distribution
input.

3) Stateful detector: In order to robustly detect when
Mt becomes consistently large, we use the Cumulative sum
(CUSUM) procedure [19]. CUSUM is a nonparametric stateful
test and can be used to generate alarms for out-of-distribution
inputs by keeping track of the historical information of the
martingale values.

The detector is defined as S1 = 0 and St = max(0, St�1+
Mt�1 � �), where � prevents St from increasing consistently

when the inputs are in the same distribution as the training
data. An alarm is raised whenever St is greater than a threshold
St > ⌧ which can be optimized using empirical data [19].
Typically, after an alarm the test is reset with St+1 = 0.

Algorithm 2 describes the VAE-based real-time out-of-
distribution detection. The nonconformity measure can be
computed very efficiently by executing the learned VAE neural
network and generating N new examples. The complexity is
comparable to the complexity of the perception or end-to-end
LEC that is executed in real-time.

Algorithm 2 VAE-based out-distribution detection
Input: Input example zt, calibration nonconformity scores

(↵m+1, . . . ,↵l), number of examples to be sampled N ,
stateful detector threshold ⌧ and parameter �

Output: Output boolean variable Anomt

1: for t = 1, 2, . . . do

2: for k = 1 to N do

3: Sample z0k using the trained VAE
4: ↵0

k = AVAE(zt, z0k)

5: pk,=
|{i=m+1,...,l} |↵i�↵0

k|
l�m

6: end for

7: Mt =
R 1
0

QN
k=1 ✏p

✏�1
k d✏

8: if t = 1 then

9: St = 0
10: else

11: St = max(0, St�1 +Mt�1 � �)
12: end if

13: Anomt  St > ⌧
14: end for

C. SVDD-based out-of-distribution Detection

1) Nonconformity measure and p-values: The SVDD-based
method also uses a learned model to calculate the non-
conformity score. The proper training set is used to train
the deep SVDD model. The center of the hypersphere c
is fixed as the mean of the representations from the initial
pass on the proper training data. After training, the neural
network function �(zt,W⇤) maps an input example zt to a
representation close to the center c. In-distribution inputs are
likely concentrated in a relatively small area in the output
space while the out-of-distribution inputs will be faraway from
the center. The distance of the representation to the center c of
the hypersphere can be used to evaluate the strangeness of the
test example relative to the proper training set and is defined
as the nonconformity measure

↵0
t = ASVDD(zt) = ||�(zt;W⇤)� c||2.

The p-value is computed as the fraction of calibration exam-
ples that have nonconformity scores greater than or equal to
↵0
t (Eq.(1)). However, in contrast to the VAE, SVDD is not a

generative model and cannot be used to generate multiple IID
examples similar to zt.
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Nonconformity measure



DEEP SUPPORT VECTOR DESCRIPTION 
(SVDD)

SVDD maps the training data into a hypersphere characterized by center c and radius R of 
minimum volume
• Training should avoid hypersphere collapse: c must be selected appropriately, no bias terms or bounded 

activation functions

Mappings of normal examples fall within, whereas mappings of anomalies fall outside the 
hypersphere
The distance from the center can be used as the NCM
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Loss function: 
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distribution examples. Although the idea is similar, the two
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sequence of p-values and realizing the detector.

B. VAE-based Out-of-distribution Detection

1) Nonconformity measure and p-values: Given an input
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and sample multiple points xk from the posterior that are
used as input to the decoder portion in order to and generate
new examples z01, . . . , z0N . Typically, the posterior of the latent
space is approximated by a Gaussian distribution. Sampling
from the posterior generates encodings xk so that the decoder
is exposed to a range of variations of the input example and
outputs z01, . . . , z
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tion.
An in-distribution input zt should be reconstructed with
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of-distribution input will likely have a larger error. The re-
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the input relative to the training set and it is used as the
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the input example zt and each generated output example z0k
as the nonconformity measure defined as
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The p-value pk for the input z0k is computed as the fraction
of calibration examples that have nonconformity scores greater
than or equal to ↵0

k using Eq. (1). Since the examples
z01, . . . , z

0
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values are independent and uniformly distributed in [0, 1] (see
discussion in Section III) and the martingale method can be
used to test if z01, . . . , z0N , and therefore zt, are generated from
the probability distribution of the training data.
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Mt will have a large value if there are many small p-values
in the sequence pk which will indicate an out-of-distribution
input.

3) Stateful detector: In order to robustly detect when
Mt becomes consistently large, we use the Cumulative sum
(CUSUM) procedure [19]. CUSUM is a nonparametric stateful
test and can be used to generate alarms for out-of-distribution
inputs by keeping track of the historical information of the
martingale values.

The detector is defined as S1 = 0 and St = max(0, St�1+
Mt�1 � �), where � prevents St from increasing consistently

when the inputs are in the same distribution as the training
data. An alarm is raised whenever St is greater than a threshold
St > ⌧ which can be optimized using empirical data [19].
Typically, after an alarm the test is reset with St+1 = 0.

Algorithm 2 describes the VAE-based real-time out-of-
distribution detection. The nonconformity measure can be
computed very efficiently by executing the learned VAE neural
network and generating N new examples. The complexity is
comparable to the complexity of the perception or end-to-end
LEC that is executed in real-time.

Algorithm 2 VAE-based out-distribution detection
Input: Input example zt, calibration nonconformity scores

(↵m+1, . . . ,↵l), number of examples to be sampled N ,
stateful detector threshold ⌧ and parameter �

Output: Output boolean variable Anomt

1: for t = 1, 2, . . . do
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3: Sample z0k using the trained VAE
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6: end for
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R 1
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QN
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✏�1
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12: end if

13: Anomt  St > ⌧
14: end for

C. SVDD-based out-of-distribution Detection

1) Nonconformity measure and p-values: The SVDD-based
method also uses a learned model to calculate the non-
conformity score. The proper training set is used to train
the deep SVDD model. The center of the hypersphere c
is fixed as the mean of the representations from the initial
pass on the proper training data. After training, the neural
network function �(zt,W⇤) maps an input example zt to a
representation close to the center c. In-distribution inputs are
likely concentrated in a relatively small area in the output
space while the out-of-distribution inputs will be faraway from
the center. The distance of the representation to the center c of
the hypersphere can be used to evaluate the strangeness of the
test example relative to the proper training set and is defined
as the nonconformity measure

↵0
t = ASVDD(zt) = ||�(zt;W⇤)� c||2.

The p-value is computed as the fraction of calibration exam-
ples that have nonconformity scores greater than or equal to
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t (Eq.(1)). However, in contrast to the VAE, SVDD is not a

generative model and cannot be used to generate multiple IID
examples similar to zt.
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IMPROVING ROBUSTNESS OF 
DETECTION USING SALIENCY MAPS
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VAEs have difficulty generating fine-granularity details of the original image
Fine-granularity details and other input features may not affect the LEC output
Saliency Map: 

• Quantify the spatial support of the LEC prediction for a given image input
Nonconformity Measure:

• Reconstruction error x saliency map

Original Image Saliency Map



AIRPORT IMAGE DATASET 
(BOEING)

7

Open set classification
• Individual labeled frames with three classes and 

bounding boxes around the objects
• Airplane, Ground Vehicle, and Person
• Person to be treated as the unknown class

Training and calibration dataset (contain only known 
classes)

• Training: 23403 images/Calibration: 5841 images
Testing dataset

• Contains both known classes (3249 images) and 
unknown classes (1135 images)

VAE for Classification + Deep SVDD
• Sample 𝑁 examples using VAE for classification 

model
• Feed 𝑁 reconstructed examples into deep SVDD

• Nonconformity measure: Distance of the 
representation to the center of the hypersphere

• Compute p-values and assurance measure 
(martingale 𝑀) for each test example

• If log𝑀 > 𝜀, the test example is a considered a 
novelty

Area Under ROC Curve ≈ 0.85



ADVANCED EMERGENCY BRAKING SYSTEM 
(AEBS)

Data Generation using CARLA Learning-Enabled Components
• Perception: CNN with 11 layers

• Control: Reinforcement learning controller 
trained using DDPG

• VAE: CNN encoder with 4 layers, 1024 FC 
layer, and symmetric decoder

• SVDD: 4 convolution layers and 1568 FC layer
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2) Martingale test: In order to improve the robustness of
out-of-distribution detection, it is desirable to use a sequence
of inputs. In CPS, the inputs arrive at the perception or
end-to-end LEC one-by-one and they are time-correlated,
and therefore not independent. For a sequence of inputs
zt : t = 1, 2, . . ., the martingale in Eq. (2) will increase
continuously even for in-distribution examples. In order to
adapt the test, we use a sliding window [t�N+1, t], and given
an input sequence (zt�N+1, . . . , zt), we compute the sequence
of p-values (pt�N+1, . . . , pt). Although the p-values are not
guaranteed to be independent and uniformly distributed, out-
of-distribution inputs will still result in small p-values and the
martingale test is used to identify sequences with many small
values. In this case, the martingale is given by

Mt =

Z 1

0
M ✏

t d✏ =

Z 1

0

tY

i=t�N+1

✏p✏�1
i d✏.

In order to apply this method to CPS, the rate that we
receive observations from the environment must be much
faster than the dynamic evolution of the system and the
main factor that differentiates consecutive observations are
random disturbances and noise. For a short window, it can
be assumed that the input sequence (zt�N+1, . . . , zt) satisfies
the exchangeability assumption and the martingale test can be
used to detect multiple small p-values in a short time interval.
It should be noted that the martingale Mt does not depend
on the order of the input examples (zt�N+1, . . . , zt) . Also,
Mt must be initialized for the first steps using, for example,
random independent and uniformly distributed p-values.

3) Stateless detector: Since we already use a sliding win-
dow to compute Mt, we employ a stateless detector based
on the value Mt and a predefined thershold ⌧ expressed as
Mt > ⌧ .

Algorithm 3 describes the SVDD-based real-time out-of-
distribution detection. Compared with the VAE, the SVDD
based method is more efficient since it does not require
generating multiple examples at each step. The martingale Mt

can be computed recursively by incorporating the p-value for
the new input and omitting the last one in the sliding window.

Algorithm 3 SVDD-based real-time out-distribution detection
Input: Input example zt, calibration nonconformity scores

(↵m+1, . . . ,↵l), sliding window size N , stateless detector
threshold ⌧

Output: Output boolean variable Anomt

1: for t = 1, 2, . . . do

2: ↵0
t = ASVDD(zt)

3: pt =
|{i=m+1,...,l} |↵i�↵0

t|
l�m

4: Mt =
R 1
0

Qt
i=t�N+1 ✏p

✏�1
i d✏

5: Anomt  Mt > ⌧
6: end for

V. EVALUATION

We evaluate the proposed approach using (1) an advanced
emergency braking system (AEBS) and (2) a self-driving

end-to-end controller (SDEC). The AEBS and SDEC are
implemented using CARLA [15]. We use CARLA 0.9.5 on
a 16-core i7 desktop with 32GB RAM memory and a single
RTX 2080 GPU with 8GB video memory.

A. Advanced Emergency Braking System

1) Experimental Setup: The architecture of the AEBS is
shown in Fig. 2. A perception LEC is used to detect the
nearest front obstacle on the road and estimate the distance.
The distance together with the velocity of the host car are
used as inputs to a reinforcement learning controller whose
objective is to generate the appropriate braking force in order
to safely and comfortably stop the vehicle.

Perception RL
Control Vehicle

Camera Distance Brake

Velocity

Fig. 2. Advanced emergency braking system architecture.

The desirable behavior is illustrated in Fig. 3. The AEBS
detects a stopped lead car and applies the brake to decelerate
and avoid the potential collision. The initial velocity of the
host vehicle is v0 and the initial distance between the host
car and the obstacle is d0. The goal of the controller is to
stop the car between Lmin and Lmax. The sampling period
used in the simulation is �t = 1/20 s. In order to simulate
realistic scenarios, we introduce uncertainty into the system.
The initial velocity v0 is uniformly sampled between 90 km/h
and 100 km/h, and the initial distance d0 is approximately
100m. CARLA allows controlling the precipitation in the
simulation using a parameter which takes values in [0, 100].
For training the perception LEC, and also the VAE and
SVDD used for out-of-distribution detection, the precipitation
parameter is randomly sampled from the interval [0, 20]. The
uncertainty introduced affects the error of the perception LEC.
It should be noted that this is just a visual effect and it does
not affect the physical behavior of the car.

d0 LminLmax 0

v0

Fig. 3. Illustration of advanced emergency braking system.

The perception LEC is implemented using a convolutional
neural network (CNN) which is trained using supervised learn-
ing with a training data set consisting of 8160 images obtained
by varying the simulation parameters described above. The
perception LEC has three layers of 24/36/48 ⇥ (5 ⇥ 5)
filters with ReLU activations and 2 ⇥ 2 strides, two layers
of 64/64 ⇥ (3 ⇥ 3) filters with ReLU activations and 1 ⇥ 1
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The desirable behavior is illustrated in Fig. 3. The AEBS
detects a stopped lead car and applies the brake to decelerate
and avoid the potential collision. The initial velocity of the
host vehicle is v0 and the initial distance between the host
car and the obstacle is d0. The goal of the controller is to
stop the car between Lmin and Lmax. The sampling period
used in the simulation is �t = 1/20 s. In order to simulate
realistic scenarios, we introduce uncertainty into the system.
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For training the perception LEC, and also the VAE and
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parameter is randomly sampled from the interval [0, 20]. The
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It should be noted that this is just a visual effect and it does
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The perception LEC is implemented using a convolutional
neural network (CNN) which is trained using supervised learn-
ing with a training data set consisting of 8160 images obtained
by varying the simulation parameters described above. The
perception LEC has three layers of 24/36/48 ⇥ (5 ⇥ 5)
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of 64/64 ⇥ (3 ⇥ 3) filters with ReLU activations and 1 ⇥ 1
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𝑑! 100 m approximately
𝑣! Randomly sampled between 

90 and 100 km/h
𝐿"#$ 1 m
𝐿"%& 3 m

CARLA precipitation
parameter 𝑟

Randomly sampled 
between 0 and 20

Sampling period 1/20 sec = 50 ms



SIMULATION RESULTS
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SELF-DRIVING END-TO-END CONTROLLER 
(SDEC)
CARLA provides an SDEC trained 
using imitation learning 
• Uses camera images as inputs and 

computes steering, acceleration, and 
brake actuation signals 

• Implemented using a CNN trained using 
14 hours of driving data recorded by 
human drivers

• The sampling period is ∆t = 100 ms

Detect physically realizable attacks
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A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, 
“CARLA: An open urban driving simulator,” in Proceedings of the 
1st Annual Conference on Robot Learning, 2017.

Boloor A, Garimella K, He X, Gill C, Vorobeychik Y, Zhang X. Attacking 
vision-based perception in end-to-end autonomous driving models. Journal 
of Systems Architecture. 2020 Apr 4:101766.

Data generation for training the VAE and SVDD
• Weather patterns: clear and cloudy noon
• Turning right, left, and going straight
Evaluation
• Detected 105 out of 105 episodes with different 

positions and rotations of the two black lines 
which are chosen to cause traffic infraction



SIMULATION RESULTS
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No attack Attack 



FORD AUTONOMOUS VEHICLE SEASONAL DATASET 
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Cloudy weather and 
freeway driving

Sunny weather and 
residential driving



AUV: AVOID OBSTACLE AND 
COMPLETE PIPELINE INSPECTION 
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AUV: LOSS OF PIPELINE  
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HIGHLIGHTS

Learn representations (VAE, AAE, SVDD) that allow effective assurance monitoring 
based on deep learning and statistical significance testing

Integration into a toolchain for model-based design of cyber-physical systems with 
learning-enabled components
• Architectural modeling of CPS 

• Engineering and integration of LECs

• System software deployment

• Modeling and analysis of assurance cases

Evaluation with open source simulator and open datasets
• Very small number of false positives and detection delay

• Execution time is comparable to the execution time of the original LECs
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