# ASSURANCE MONITORING IN LEARNING-ENABLED CYBER-PHYSICAL SYSTEMS

**XENOFON KOUTSOUKOS** 

**INSTITUTE FOR SOFTWARE INTEGRATED SYSTEMS** 

**ELECTRICAL ENGINEERING AND COMPUTER SCIENCE** 

VANDERBILT UNIVERSITY

VANDERBILT VUNIVERSITY

#### ASSURANCE MONITORING OF LEARNING-ENABLED CYBER-PHYSICAL SYSTEMS



Assurance monitoring based on inductive conformal anomaly detection

- Variational autoencoder (VAE)
- VAE for regression
- Adversarial Autoencoder (AAE)
- Deep support vector description (SVDD)

#### Evaluation

- Airport image dataset
- Self-driving simulator and open datasets
- Autonomous underwater vehicle

## **NOVELTY DETECTION IN HIGH-DIMENSIONAL TIME SERIES**

- In autonomous systems, inputs are high-dimensional sensor measurements (e.g., camera, LiDAR) and arrive one by one based on the sampling rate of the sensors
- After observing each input, inductive conformal anomaly detection is used to quantify the degree to which the input disagrees with the training data
- Main idea: Train an appropriate neural network architecture which can be used for detection in real-time
  - Use multiple examples sampled from a learn representation from the input distribution
  - A nonconformity measure (NCM) to evaluate the degree to which a new example disagrees from the distribution of the training data
  - Compute empirical *p*-values used for statistical significance testing
  - Perform a randomness test to compute an assurance measure using a martingale process of the *p*-values

## **VAE-BASED NONCONFORMITY MEASURE**

# Original Image

**Reconstructed Image** 



$$\alpha'_k = A_{\text{VAE}}(z_t, z'_k) = ||z_t - z'_k||^2$$

# Given an input example at time *t*, the encoder portion of the VAE is used to approximate the posterior distribution of the latent space

• Typically, the posterior of the latent space is approximated by a Gaussian distribution

# Sampling from the posterior generates multiple encodings so that the decoder is exposed to a range of variations of the input example

- An in-distribution input should be reconstructed with a relatively small reconstruction error.
- Conversely, an out-of-distribution input will likely have a larger error.

The reconstruction error is a good measure of the strangeness of the input relative to the training set and it is used as the nonconformity measure

#### 



# SVDD maps the training data into a hypersphere characterized by center *c* and radius *R* of minimum volume

 Training should avoid hypersphere collapse: c must be selected appropriately, no bias terms or bounded activation functions

# Mappings of normal examples fall within, whereas mappings of anomalies fall outside the hypersphere

The distance from the center can be used as the NCM

$$\alpha'_t = A_{\text{SVDD}}(z_t) = ||\phi(z_t; \mathcal{W}^*) - \boldsymbol{c}||^2$$

VANDERBILT WUNIVERSITY

 $\mathcal{F}$ 

## IMPROVING ROBUSTNESS OF DETECTION USING SALIENCY MAPS



Original Image



Saliency Map

VAEs have difficulty generating fine-granularity details of the original image Fine-granularity details and other input features may not affect the LEC output Saliency Map:

• Quantify the spatial support of the LEC prediction for a given image input Nonconformity Measure:

Reconstruction error x saliency map

## AIRPORT IMAGE DATASET (BOEING)

#### **Open set classification**

- Individual labeled frames with three classes and bounding boxes around the objects
  - Airplane, Ground Vehicle, and Person
  - Person to be treated as the unknown class

## Training and calibration dataset (contain only known classes)

- Training: 23403 images/Calibration: 5841 images **Testing dataset** 
  - Contains both known classes (3249 images) and unknown classes (1135 images)

#### VAE for Classification + Deep SVDD

- Sample N examples using VAE for classification model
- Feed *N* reconstructed examples into deep SVDD
  - Nonconformity measure: Distance of the representation to the center of the hypersphere
- Compute *p*-values and assurance measure (martingale *M*) for each test example
- If log M > ε, the test example is a considered a novelty







# ADVANCED EMERGENCY BRAKING SYSTEM (AEBS)





#### **Data Generation using CARLA**

| $d_0$                                  | 100 m approximately                         |
|----------------------------------------|---------------------------------------------|
| $\nu_0$                                | Randomly sampled between<br>90 and 100 km/h |
| $L_{min}$                              | 1 m                                         |
| $L_{max}$                              | 3 m                                         |
| CARLA precipitation parameter <i>r</i> | Randomly sampled between 0 and 20           |
| Sampling period                        | 1/20 sec = 50 ms                            |

#### **Learning-Enabled Components**

- Perception: CNN with 11 layers
- Control: Reinforcement learning controller trained using DDPG
- VAE: CNN encoder with 4 layers, 1024 FC layer, and symmetric decoder
- SVDD: 4 convolution layers and 1568 FC layer

## **SIMULATION RESULTS**

In-distribution



#### **Out-of-distribution**



# SELF-DRIVING END-TO-END CONTROLLER (SDEC)

# CARLA provides an SDEC trained using imitation learning

- Uses camera images as inputs and computes steering, acceleration, and brake actuation signals
- Implemented using a CNN trained using 14 hours of driving data recorded by human drivers
- The sampling period is  $\Delta t = 100 \text{ ms}$

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, "CARLA: An open urban driving simulator," in *Proceedings of the 1st Annual Conference on Robot Learning*, 2017.

#### **Detect physically realizable attacks**





Boloor A, Garimella K, He X, Gill C, Vorobeychik Y, Zhang X. Attacking vision-based perception in end-to-end autonomous driving models. *Journal of Systems Architecture*. 2020 Apr 4:101766.

#### Data generation for training the VAE and SVDD

- Weather patterns: clear and cloudy noon
- Turning right, left, and going straight **Evaluation**
- Detected 105 out of 105 episodes with different positions and rotations of the two black lines which are chosen to cause traffic infraction

VANDERBILT WUNIVERSITY

## **SIMULATION RESULTS**

No attack





## FORD AUTONOMOUS VEHICLE SEASONAL DATASET

Cloudy weather and freeway driving





105

15

20

Sunny weather and residential driving



VANDERBILT WUNIVERSITY

## AUV: AVOID OBSTACLE AND COMPLETE PIPELINE INSPECTION



VANDERBILT WUNIVERSITY

# **AUV: LOSS OF PIPELINE**



VANDERBILT VUNIVERSITY

### **HIGHLIGHTS**

Learn representations (VAE, AAE, SVDD) that allow effective assurance monitoring based on deep learning and statistical significance testing

Integration into a toolchain for model-based design of cyber-physical systems with learning-enabled components

- Architectural modeling of CPS
- Engineering and integration of LECs
- System software deployment
- Modeling and analysis of assurance cases

Evaluation with open source simulator and open datasets

- Very small number of false positives and detection delay
- Execution time is comparable to the execution time of the original LECs