AUTOMOTIVE CPS: INTEGRATION CHALLENGES AND EXPERIMENTAL PLATFORM

In Support of NSF CPS Science of Integration Project

ECS Process, Methods and Tools Group Electrical and Controls Systems Research Lab General Motors Global R&D

2012 GM Support & Interactions

- Site Visits
 - Prof. John Baras visited GM R&D (July/August 2012)
 - GM visits to ND (early 2012)
- GM provided 2 summer internships
 - Po Wu, Notre Dame University
 - Yuchen Zhou, Univ. of Maryland

Vehicle Control System Development

Automotive Evaluation Platform

- Integration Scenario 1
 - Product configuration plug-play features
- Integration Scenario 2
 - Impact of new E/E technology plug-play platform
- Integration Scenario 3
 - New property plug-play property

- Integration scenario 1: Passivity case study
 - Demonstrate the usefulness of the passivity property for integration of multiple features
 - ACC design improvement with passivity index
 - As a use case to exercise on experimental platform (at VU)
- Integration scenario 2: Simulation-based
 - Virtual platform using simulator
 - Integrated with control and vehicle simulator
 - Ongoing GM experimental platform
 - Freescale Corba Dual-core controller
 - Debugging and runtime data logging equipment
- Integration scenario 3: System safety
 - Start from robust assessment home-made tool

- Integration scenario 1: Passivity case study
 - ACC design improvement with passivity index

- Integration scenario 2: simulation-based
 - GMI experimental platform extension

Results compared with VU platform for validation and assessment

- Integration scenario 3: System safety
 - Start from robust assessment home-made tool

Method: divide-and-conquer

Expected behavior

Counter-examples from RobustTool

Index	Part of Minimal Counter Example set
1	4 m shift on laser range
2	3 m noise on laser range and 1 km/h shift on laser range rate
3	2 km/h shift on laser range rate
4	1 m shift on laser range and 1 km/h shift on laser range rate
5	2 m shift on laser range and 5 km/h noise and 2 spikes on laser range rate
6	3 m shift and 1 m noise and 3 km/h noise and 2 spikes on laser range rate

Behavior with fault in counter-example (4m shift)

