# EAGER: A cloud-assisted Framework For Improving Pedestrian Safety in Urban Communities using Crowd-sourced Mobile and Wearable Device Data

PI: Dr. Murtuza Jadliwala, The University of Texas at San Antonio Co-PI: Dr. Jibo He, Wichita State University

#### **Research Goal**

Design of an *effective pedestrian safety system* to *prevent* significant threats *distracted pedestrians* pose to themselves and others in the vicinity.



#### Task 1: **Detect** Pedestrian **Distractions**

- Dominant frequency-based activity matching
  (DFAM) to detect distracted pedestrian activities.
- A hierarchical distracted activity recognition framework to reduce response time.



## **Experimental Setup**

- 14 distracted activities: Reading, eating, using smartphone, or drinking while climbing stairs, walking or running.
- 20 participants with smartphone on the wrist and a paired smartphone in their front trouser pocket.
- 4 smartphone-smartwatch placements.

#### Observations

Multi-participant DFAM compared with Support Vector Machine (SVM), Decision Trees (DT), Random Forests (RF), Naive Bayes (NB), k-Nearest Neighbors (k-NN).

|         | DFAM | SVM  | DT   | RF   | NB   | 1-NN | 2-NN | 3-NN |
|---------|------|------|------|------|------|------|------|------|
| W = 32  | 0.49 | 0.56 | 0.45 | 0.53 | 0.49 | 0.53 | 0.52 | 0.54 |
| W = 64  | 0.52 | 0.65 | 0.53 | 0.64 | 0.58 | 0.54 | 0.58 | 0.58 |
| W = 128 | 0.61 | 0.67 | 0.55 | 0.65 | 0.58 | 0.58 | 0.58 | 0.59 |
| W = 256 | 0.65 | 0.70 | 0.64 | 0.71 | 0.62 | 0.63 | 0.63 | 0.63 |
| W = 512 | 0.69 | 0.76 | 0.64 | 0.76 | 0.67 | 0.69 | 0.69 | 0.70 |
|         |      |      |      |      |      |      |      |      |
|         |      |      |      |      |      |      |      |      |

Table(Right): Average Resource Consumption of Different Activity Recognition Models

| Table(Left): Average Classification Accuracies of |  |
|---------------------------------------------------|--|
| Different Activity Recognition Models             |  |

|      | Response | Utilization | Consumption | Utilization | Model     |
|------|----------|-------------|-------------|-------------|-----------|
|      | Time (s) | CPU (%)     | Power (mW)  | RAM (MB)    | Size (KB) |
| DFAM | 1.8      | 1.7%        | 33.3-129.5  | 37          | 236       |
| SVM  | 1.9      | 3.9%        | 33.3-188.7  | 43          | 229       |
| DT   | 1.9      | 0.8%        | 33.3-85.1   | 36          | 111       |
| RF   | 2.1      | 3.1%        | 85.1-222    | 68          | 6100      |
| NB   | 1.8      | 1.3%        | 40.7-96.2   | 20          | 131       |
| 1-NN | 1.9      | 2.1%        | 85.1-214.6  | 23          | 1700      |
| 2-NN | 1.9      | 1.9%        | 85.1-188.7  | 32          | 1700      |
| 3-NN | 1.9      | 2.1%        | 85.1-218.3  | 57          | 1700      |

DFAM has comparable accuracy and better response times.

The hierarchical approach towards distraction detection minimizes resource footprint in presence of mundane (simple) pedestrian activities.

| Table: Resource Consumption of Hierarchical DFAIM |         |            |         |  |  |
|---------------------------------------------------|---------|------------|---------|--|--|
|                                                   | All     | <b>S</b> 1 | S2      |  |  |
| Response Time                                     | 1.8 s   | 0.6 s      | 0.9 s   |  |  |
| CPU Utilization                                   | 1.7%    | 0.8%       | 1.5%    |  |  |
| RAM Utilization                                   | 37 MB   | 30 MB      | 35 MB   |  |  |
| Power Consumption                                 | 64.4 mW | 37.8 mW    | 59.8 mW |  |  |



#### Plan

- Initial performance evaluation through identification and adoption of effective (and less-intrusive) user alert mechanisms.
- Extensive analysis of the framework with the help of a campus-wide test-bed.

#### **Task Outcomes**

- 1. N. Vinayaga-Sureshkanth, A. Maiti, M. Jadliwala, K. Crager, J. He, and H. Rathore, "Towards a Practical Pedestrian Distraction Detection Framework using Wearables", in IEEE WristSense, 2018 (Best Paper Award).
- 2. N. Vinayaga-Sureshkanth, A. Maiti, M. Jadliwala, K. Crager, J. Hé, and H. Rathore, "A Practical Framework for Preventing Distracted Pedestrian-related Incidents using Wrist Wearables", under Review at IEEE Access, 2018.

### **Ongoing and Future Work**

# Task 2: Further improve detection response times Approach: Apply Compressive Sensing (CS) to:

- Reduce communication data size in distraction detection and cloud framework.
- Recognize distracted activities with higher block size.

# Task 3: **Alert n**earby **users** *Approach*: Employ **cloud** to:

- Gather contextual data.
- Consolidate hazards.
- **Distribute** knowledge.

#### Task objectives:

- Real-time service.
- Protect user privacy.
- **Crowd-sense** hazards.



<u>Task 4</u>: **Sense hazards** rather than **detect distraction** *Approach*: **Ultrasonic sound** and **light sensors** to sense fast approaching hazards (e-bike riders or skateboarders) or obstacles.

