

Inertial Localization

Overview & Motivation

• **Goal**: Enable accurate indoor pedestrian localization using smartphone IMUs to convey key environmental information to users: ego-location

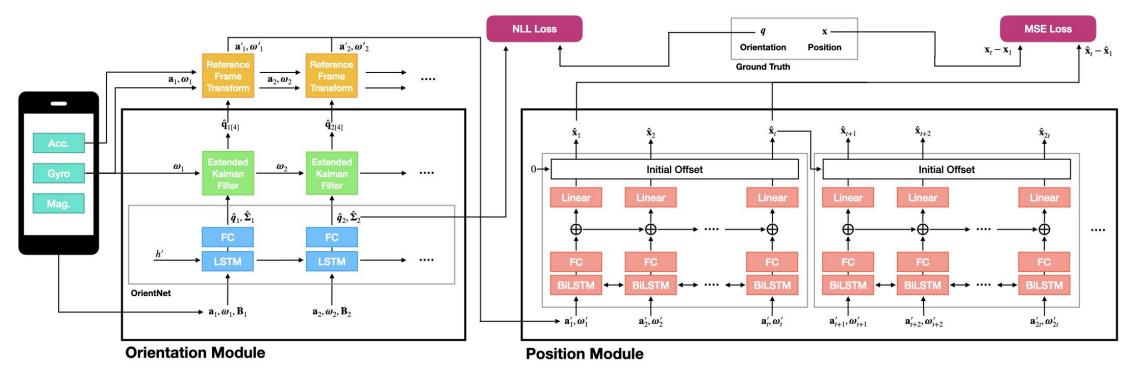
• Motivation:

- Ego-location forms basis of environmental understanding for navigation
- IMUs consist of 3-axis accelerometers, gyroscopes, and magnetometers
- IMUs require no pre-existing infrastructure, have low power draws, and are ubiquitous in modern smartphones

Related Work

- **IOnet** [5]: Early usage of deep networks (Bi-LSTM) to estimate user velocity from IMUs
- **RoNIN** [6]: Explores 3 deep architectures to improve velocity estimation of IOnet
- **TLIO** [7]: Filter-based approach to combine RoNIN-style velocity estimation with non-deep orientation estimation from gyroscope measurements
- **MUSE** [3]: Filter-based orientation estimation using gyroscope, accelerometer, and magnetometer
- **Brossard et al.** [4]: Deep method reduces gyroscope noise to improve gyroscope-only orientation estimation

Method



Overall Pipeline

- . Predict orientation from local-frame IMU signals
- Learned Orientation Network (LSTM)
- Trained to predict estimate + uncertainty of quaternion orientation
- 2. Filter orientation using manifold Extended Kalman Filter[1]
 - Operates in quaternion-preserving space
 - Combines low-drift Orientation Network & locally-accurate gyroscope measurements
- 3. Rotate local-frame IMU to global frame using orientations
- 4. Predict position from global-frame IMU signals
 - Learned Position Network (Windowed Bi-LSTM)
 - Trained directly with MSE Loss

Novel Dataset:

20+ hours of human walking, 15 Subjects & 3 Buildings

A Cognitive Navigation Assistant for the Blind

Award #1637927, **PIs: Kris Kitani, Manuela Veloso**

Results

• Orientation Metrics

• Angular RMS Error: angle error of each point in trajectory Comparison of Angular RMSE (Radians) in Different Buildings

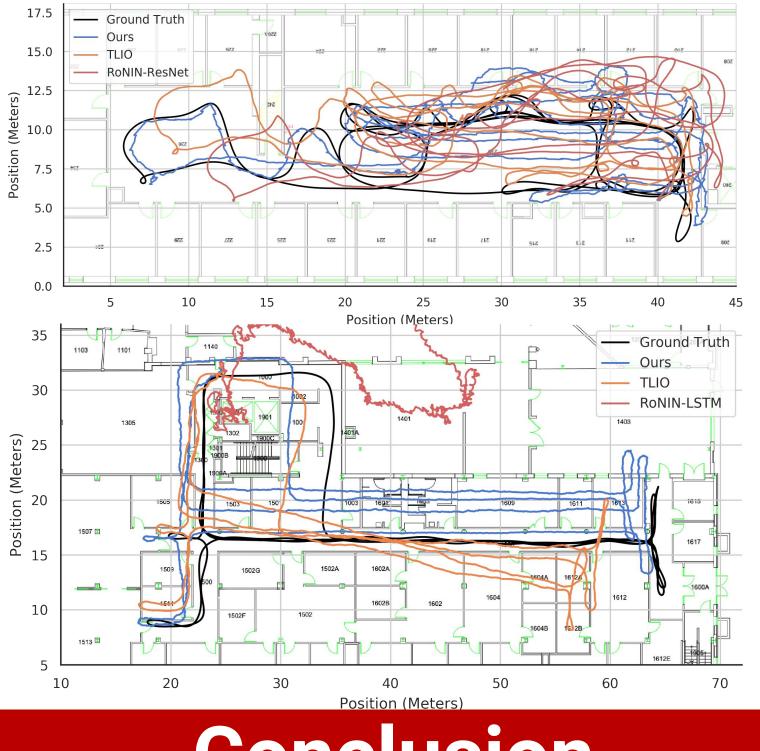
System	Bldg 1	Bldg 2	Bldg 3
iOS CoreMotion	0.39	0.37	0.40
MUSE	0.21	0.25	0.45
Brossard et. al. (2020)	0.23	0.30	0.47
OrientNet only (ours)	0.21	0.44	0.49
OrientNet+EKF (ours)	0.08	0.10	0.14

• **Position Metrics** [2]

- *ATE*: error of each point in trajectory
- *T-RTE*: error over windows of 1 minute in length
- *D-RTE*: error over windows of 1 meter in length

	Comparison of Position Error (m) in Different Buildings									
Model	Building 1			Building 2			Building 3			
	ATE	T-RTE	D-RTE	ATE	T-RTE	D-RTE	ATE	T-RTE	D-RTE	
PDR	25.70	14.66	2.50	21.86	19.48	1.66	12.66	12.74	1.09	
R-LSTM	18.41	6.78	0.52	29.81	18.67	0.75	33.69	13.14	0.62	
R-TCN	12.67	6.13	0.48	22.52	13.69	0.73	24.79	12.48	0.59	
R-ResNet	10.48	6.20	0.53	35.44	15.71	0.49	14.11	11.78	0.60	
TLIO	5.44	3.33	0.38	8.69	8.86	0.33	6.88	6.68	0.34	
Ours	4.99	2.37	0.34	8.33	5.97	0.41	6.62	2.86	0.26	

• Visualizing Localization Results



Conclusion

Main Contributions:

- Our orientation module outperforms existing traditional and data-driven methods in estimating orientation
- Our end-to-end system localizes better than state-of-the-art data-driven inertial approaches
- Our pipeline is a low-resource source of ego-motion understanding, allowing further systems to provide a better cognitive map of the surrounding environment

References

[1] Hertzberg, C. et. al. "Integrating Generic Sensor Fusion Algorithms with Sound State Representations through Encapsulation of Manifolds." Information Fusion Vol. 14. 2013. [2] Sturm, J., et. al. "Towards a benchmark for RGB-D SLAM evaluation." RSS. 2011. [3] Shen, Sheng, et al. "Closing the gaps in inertial motion tracking." Mobicom. 2018. [4] Brossard, Martin, et. al. "Denoising IMU Gyroscopes With Deep Learning For Open-Loop Attitude Estimation." IEEE RA-L. 2020. [5] Chen, Changhao, et al. "IONet: Learning to cure the curse of drift in inertial odometry." AAAI. 2018.

[6] Yan, Hang, et. al. "RoNIN: Robust Neural Inertial Navigation in the Wild: Benchmark, Evaluations, and New Methods." ICRA. 2019.

[7] Liu, Wenxin, et. al. "TLIO: Tight Learned Inertial Odometry." IROS. 2020.

Overview & Motivation

• **Goal**: Accurate smartphone localization for indoor navigation using only RSSI received from a set of BLE beacons. Navigation app for both Android and iOS.

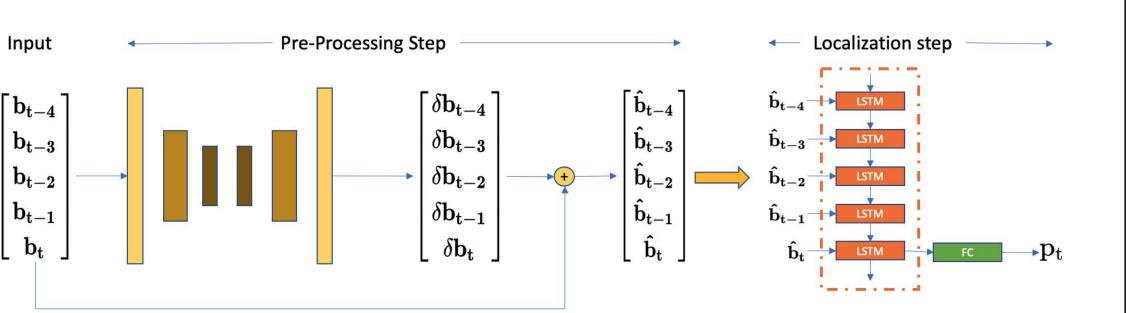
• Motivation:

- BLE localization gives accurate (<1 m error) global positioning, accurate enough to provide navigation assistance for the blind and visually impaired.
- Bluetooth chip present in all modern day smartphones, no extra sensors need to be attached to user devices. • Minimal infrastructure cost as BLE beacons are cheap. • Scanning for RSSI consumes very little power.

Related Work

- Hilsenbeck et al. [8]: Pedometer and WiFi RSSI based mobile indoor positioning.
- Letchner et al. [9]: Bayesian model based trilaterization on WiFi RSSI signal.
- Hall et al. [10]: Software Defined Radio (SDR) based localization using probabilistic model and Deep Learning.
- **DLRNN** [11]: End to end deep learning based localization using WiFi RSSI signals.

Method



BLE RSSI characteristics vary a lot between devices. In order to make our model generalize to multiple devices without specifically collecting data and training on each one, we propose a 2 step method -

• Pre-processing step: Maps RSSI measured by any modern smartphone to one which was part of the labeled training dataset.

• Conv-Deconv Network

• Localization step: Predict the location of the smartphone from the matrix of RSSI signals received.

• 2 LSTM layers followed by 2 fully connected layers. • Localization loss + Position smoothness loss + Statistic similarity loss + Temporal smoothness loss

Dataset:

• 50 BLE beacons. Accurate ground truth using LIDAR scans. Data collection apps for Android and iOS.

BLE Beacon Localization

Method

Test on iPhone Huawe

Xiaomi Pixel Average Median

90% ile

• Model trained on a specific phone is able to transfer to other phones that it has not seen at train time • Localization error of 1.5-1.7 m on inexpensive phones without explicitly training on them.

Let's get you moving Start location Current Locatio End destination NSH-4225

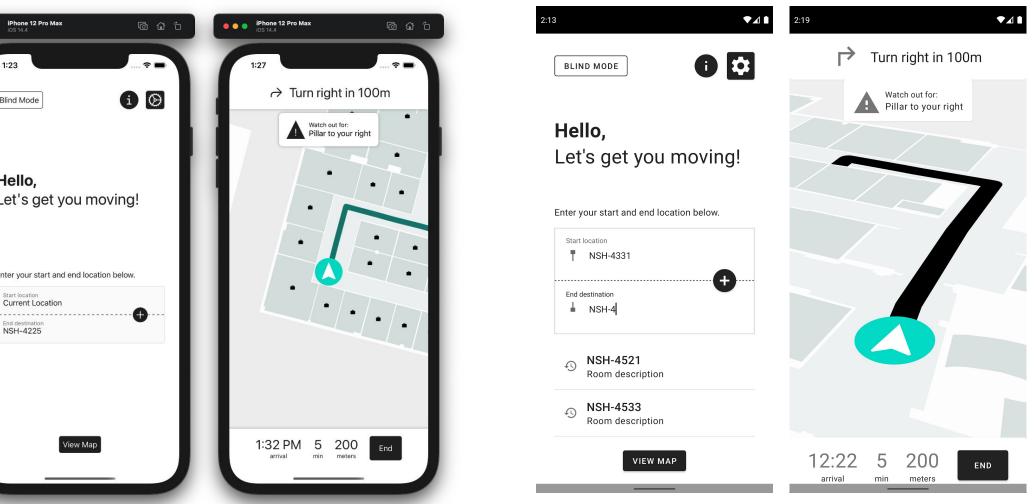
• An indoor navigation app with a sub-1m accuracy is crucial for people with vision disabilities.



Results

\rightarrow	→ KNN Reg		Bayesian		KRR+KF		DL-RNN		Proposed(Sup)		Proposed (Semi	
ı↓	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std
e	1.1917	0.9298	1.5424	1.2267	1.7575	1.0770	1.0205	0.7712	0.9409	0.7163	0.9572	0.7741
ei	6.3579	9.595	4.8951	6.3216	3.0021	2.3075	2.2437	2.2014	1.7900	1.5515	1.7370	1.3260
ni	4.1781	7.2262	3.5959	4.2674	2.7569	1.9125	2.4360	3.0378	1.7014	1.3918	1.6284	1.1280
	1.9082	1.5561	2.1457	1.7167	1.8955	1.1816	1.4347	1.1638	1.2769	1.0183	1.2687	1.0341
ng	2.0139	2.5525	2.0843	2.3115	2.0767	1.2390	1.5282	1.1301	1.2898	1.0808	1.2732	1.0310
ge	3.0157	5.7190	2.7724	3.8090	2.2640	1.6644	1.6826	1.8650	1.3700	1.2080	1.3462	1.0979
n	1.5230		1.7505		1.8884		1.2067		1.0258		1.0436	
e	5.2514		5.5	6866 4.20		660 3.29		968	2.7689		2.6601	
	52.5572		48.3	013	17.2977		31.9299		19.7231		11.8294	
Evaluation results for different methods when trained using data from iPhone and Samsung phones												

Mobile App



iOS

Android

• Helping people navigate requires a easy to use mobile app on both Android and iOS.

• Deployed our deep learning solution to the app • Complete offline usage once the app is downloaded

Conclusion

• Our method performs similar to other parametric models trained specifically for the task of RSSI based localization. • While other methods fail at transferring from one device manufacturer to other, out method performs comparably on previously unseen devices.

References

[8]Sebastian Hilsenbeck, Dmytro Bobkov, Georg Schroth, Robert Huitl, and Eckehard Steinbach. 2014. Graph-Based Data Fusion of Pedometer and WiFi Measurements for Mobile Indoor Positioning. InPro-ceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiguitous Computing

[9] Julia Letchner, Dieter Fox, and Anthony LaMarca. 2005. Large-ScaleLocalization from Wireless Signal Strength. InProceedings of the 20th National Conference on Artificial Intelligence - Volume 1(Pittsburgh, Pennsylvania) (AAAI'05). AAAI Press, 15–20. [10] Donald L Hall, Ram M Narayanan, and David M Jenkins. 2019. SDRBased Indoor Beacon Localization Using 3D Probabilistic MultipathExploitation and Deep Learning.Electronics8, 11 (2019), 1323.

[11] S. Bai, M. Yan, Q. Wan, L. He, X. Wang, and J. Li. 2020. DL-RNN: AnAccurate Indoor Localization Method via Double RNNs.IEEE Sensors Journal20, 1 (Jan 2020), 286–295.