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 Electric power grid is arguably the largest cyber-physical system in operation

Motivation Research activities

 US grid:300,000 km of high voltage lines, 15000 generators,5000 distribution facilities, 500 companies

 The physical grid is carefully monitored and controlled using a cyber-infrastructure of meters, 

communication lines and control centers (SCADA)

 SCADA must evolve: Grid is hitting capacity limits; smart grid concept; renewable energy (wind, etc.)

and better meters (PMU) now available

 Consequences of error: Equipment failures, blackouts, economic loss (80B annual loss est.)

 Our team has combined expertise in power systems, network analysis, high performance computing, and machine learning

 C t l f id i t A hit t f i ti d t l? Di t ib t d t l? S h d li t t i ?

Approach

 Automatic generation control using minimal communication

 Scheduling for electric vehicle charging in distribution grid

 Scheduling in smart grid

Control of electric grid

 Robust state estimation

Estimation in electric grid

 Monte Carlo state estimation using high performance 
computing (HPC)

 Speeding up distributed algorithms using HPC

Computing in electric grid

 G hi l d l f l t i id

Modeling of electric grid

LTS for Robust State Estimation (SE)
Motivation

Communication for Enhanced-AG Control High Performance Computing in Power Grid

 Control of power grid is paramount: Architecture for communication and control? Distributed control? Scheduling strategies?

 State estimation required for control: New paradigms for estimation? Estimation using new types of meters? Estimation using non-linear models?

 Modeling required: Using graphical models to incorporate highly random sources such as wind power? Machine learning for data-driven modeling?

 High performance computing: Modern modeling, estimation, control is computer-intensive. Fast implementation using new computing paradigms?

 Implications for CPS: How can a large, complex system based on physical laws (PhyNet) be effectively monitored and controlled?

 Robust state estimation

 Distributed state estimation

 Semi-definite programming for estimation in non-linear models

 Optimal placement of PMUs to improve state estimation

 Graphical models of electric grid

 Predicting faults in graphical model of electric grid using 
machine learning
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 Using real-time measurements, State Estimation serves as the 
foundation for monitoring and then controlling the power grid
 Classical method: Weighted least squares (WLS) with largest residual 
removed used to deal with non-Normal errors (bad data)
 Problem: When the bad data are correlated or bounded, this estimator 
has poor performance in detecting bad data.
 New approach: Using Robust Estimator built using Least Trimmed 
Squares (LTS) to detect and remove bad data.
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 Automatic Generation Control (AGC) problems in coordinating/utilizing control resources for frequency regulation

 Communication architecture design for enhanced AGC needs to know physical characteristics of electric grid

 Requirement for minimum information exchange between control areas and the protection of private information

 Identify interaction strength among control External Electrical Distance

Motivation

Interactions Variable Approach Four Power System Cases

Advances in High Performance Computing
 Peak performance grows exponentially. Multicore CPUs and GPUs:Tflop/s (1012) under USD 1,000

 Hard to leverage this performance: parallelism, memory hierarchy, special instructions

Challenges in Power System
 Uncertainties in electric power distribution system: Wind power, DG, PHEV, responsive load, etc.

Motivation
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 Newton’s iterative method for AC
power system SE using WLS
 Initial guess is the key
 No guarantees (Especially when
system is started/restarted)
 Approach: Convex (SDP)
relaxation of WLS as

Motivation

y g g
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 Decide needed inter-area information 
exchange

 Exchanged variables are functions of internal 
states (“x”) of control area, associated with 
zero eigen-values of the singular system

 Choice protects privacy of control area
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Interactions Variables: Weak 
Interaction Scenario

Interactions Variables: 
Strong Interaction Scenario

Power Flow Computation in Distribution System: Given system model and load, compute system state: voltages:
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IEEE 37 Bus System: Voltages
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Three phase unbalanced system
Two terminal link model:

 Probabilistic power flow: report power system states with confidence interval or PDF

Leveraging Emerging Computer Architectures in Smart Grids: Monte Carlo Simulation
 Monte Carlo simulation: Gold standard for probabilistic power flow. Extensible to contingency analysis, etc.

 Maps well to modern multi-core and many-core platforms
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ANSI C84.1: Range A: 5%~7% off nominal voltage
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Single terminal node model:

Forward backward sweep: small size complex Matrix-Vector Multiplications
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Communication Architectures for Two-area System under Different Scenarios Parallel Message Passing for SE
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Motivation
 Power system can be modeled
as graphical model
 Then, SE can be done by
machine learning methods, such
as belief propagation (BP) using

Weak Interaction Scenario Strong Interaction Scenario
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as belief propagation (BP) using
equivalent junction tree
 But, BP over a junction tree is
computationally intensive
 Approach: Investigate parallel
message passing algorithms for
BP, to take advantage of advances
in parallel computing (GPU, etc.)
 Substantial gain for large cliques
and separators are large.


