

A Cyber-Physical System for PV Monitoring and Control **Cloud Movement and Shading Prediction**

S. Katoch, P. Turaga, A. Spanias, C. Tepedelenlioglu, R. Ayyanar, M. Banavar SenSIP Center, School of ECEE, Arizona State University

MOTIVATION

Open problems in PV array management

- **Efficiency improvement in solar energy farms;**
- Fault detection and power output optimization;
- **Find correlation between imagery and PV circuit;**
- Skyline feature prediction for better power grid control.

PROJECT AIM

- Power Output Optimization by skyline feature prediction using imaging algorithms.
- **Using ML techniques with sensor fusion data from PV** modules for fault detection.[1]
- Using Topology Optimization based on predicted Shading conditions for maximum power output.

The SenSIP 18kw (104 panel) experimental facility established at ASU with industry collaborators [2].

oster Template Designed by Genigraphics ©20 1.800.790.4001 www.genigraphics.com

Multivariate time-series with intensity values at same pixel locations in all frames

 $e_{t+1} = F(e_t) = \sum_{k=1}^{N(e_t)} (x_{k+1} - x_k + e_t) w_k(e_t, x_k)$ where $x_k \in E$ is the k^{th} nearest neighbor of e_t and $w_k(e_t, x_k)$ are Nadaraya Watson weights [3,4].

Locality Sensitive Hashing Method is used to improve the computation efficiency compared to Exhaustive Nearest Neighbor Methods [5,6].

PRELIMINARY RESULTS

VIDEO PREDICTION ALGORITHM

(regression)

MODELING AND PREDICTION

• I(x, y, t) represents a video

$$p_t = [p_{1,t}, p_{2,t}, \dots, p_{M,t}]^T \in R$$

 $P = [p_1, p_2, \dots, p_T] \in R^{M x}$

Phase Space Matrix.

 $\mathbf{E} = [e_1, e_2, \dots, e_N] \in \mathbb{R}^{M \times \sum_{i=1}^M d_i}$ where each e_t is a phase space point.

□ Kernel Regression for Prediction.

Predicted Frame Numbers : 100, 250, 400, 550 and 700 (horizontally)

Classes: Boiling Water, Candle, Fire, Fountain, Sea (vertically)

Around 780 frames predicted using 75 frames.

	K-NN	LSH ($k = 5$)	LSH $(k = 10)$	LSH ($k = 15$)	LSH $(k = 20)$	LSH ($k = 25$)
Boiling Water	511.36	161.69 ±6.77	160.88 ± 5.83	139.08 ±6.72	121.73 ±6.67	115.26 ±7.73
Candle	497.71	162.04 ±4.83	148.35 ±4.89	116.85 ±6.15	96.99 ±6.07	97.83 ±6.47
Fire	548.39	158.18 ±3.51	162.96 ±3.77	142.47 ±5.70	113.70 ±6.02	103.76 ±5.73
Fountain	484.48	160.10 ± 2.08	154.77 ±4.60	148.71 ±4.99	112.72 ±6.34	110.57 ±5.45
Sea	413.18	147.84 ±2.49	149.89 ± 3.54	141.90 ±6.34	132.56 ±6.34	125.65 ± 5.63

ONGOING & PLANNED WORK

- Develop shading prediction systems using a small network of horizontal viewing cameras.
- Weathercam data used in Cloud **Movement Prediction.**
- Sequential Models explored for prediction in phase space.

REFERENCES

pp.1941-1948, 2009.

[4] Nadaraya, Elizbar A. "On estimating regression." Theory of Probability & Its Applications 9.1, 141-142, 1964. [5]Datar, M., Immorlica, N., Indyk, P., & Mirrokni, V. S. Locality-sensitive hashing scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on Computational geometry (pp. 253-262). ACM, June, 2004. [6] Katoch, S., Turaga, P., Spanias, A., Tepedelenlioglu, C. "Fast Non-Linear Methods for Dynamic Texture Prediction.", ICIP, Athens, 2018.

ACKNOWLEDGEMENTS This research is supported in part by the SenSIP center and the NSF CPS program #1646542.

Sensor Signal and Information Processing Center https://sensip.asu.edu

INDUSTRY CONSORTIUM

Sen

	K-NN (PSNR)	LSH (PSNR)	K-NN (FSIM)	LSH (FSIM)
Boiling Water	17.57	17.61	0.75	0.746
Candle	13.37	13.33	0.79	0.79
Fire	15.39	15.38	0.777	0.7772
Fountain	18.64	18.66	0.745	0.741
Sea	23.15	23.15	0.767	0.768

Columns 1 and 2 represent PSNR and Columns 3 and 4 represent FSIM for 75 frames generated by exhaustive K-NN method and LSH with k = 25 respectively.

Computation Time (in seconds) for 7 Hash Tables. Number of bits (k) = 25 gave the optimal computation time.

[1]Braun, H.; Buddha, S.T.; Krishnan, V.; Spanias, A.; Tepedelenlioglu, C.; Yeider, T.; Takehara, T.; "Signal processing for fault detection in photovoltaic arrays," 2012 ICASSP, pp.1681-1684, 25-March 2012.

[2]S. Rao, S. Katoch, P. Turaga, A. Spanias, C. Tepedelenlioglu, R. Ayyanar, H.Braun, J. Lee, U.Shanthamallu, M. Banavar, D. Srinivasan, "A Cyber-Physical System Approach for Photovoltaic Array Monitoring and Control," Proceedings 8th International *Conference on Information, Intelligence, Systems and Applications (IEEE IISA 2017),* Larnaca, August 2017.

[3]Basharat, Arslan, and Mubarak Shah. "Time series prediction by chaotic modeling of nonlinear dynamical systems." ICCV,

