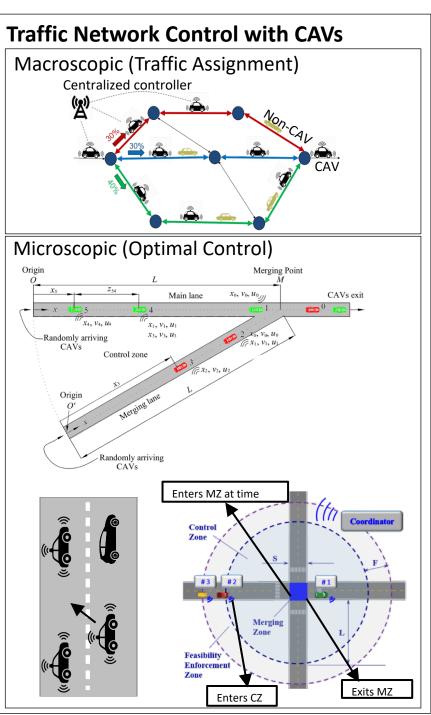


Breakthrough: A Dynamic Optimization

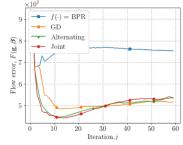
Framework For Connected Automated

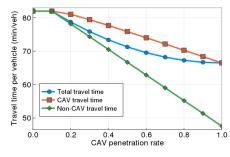

Vehicles In Urban Environments

- PI: Christos Cassandras, Co-PI: Yannis Paschalidis
- Division of Systems Eng., Dept. of Electrical and Computer Eng., and Center for Information & Systems Eng., Boston University
- cgc@bu.edu, <u>https://christosgcassandras.org/</u>
- yannisp@bu.edu, <u>https://sites.bu.edu/paschalidis</u>
- CNS-1645681
- Poster Time: 2:45-3:45, 11/21/19

Description

Rational quantification of the best performance achievable by a transportation system consisting of Connected Automated Vehicles (CAVs) relative to the current state of the art


- Understand and Quantify traffic patterns and behavior using data
 - Origin-Destination Demands, Travel Latency Cost Functions <u>https://salomonw.github.io/congestionmaps/Dyna</u> <u>micPage/AM/</u>
- Measure / Estimate necessary CAV penetration to benefit the entire system
- Development of a Control and Dynamic Optimization Framework to achieve best performance on Control Zones: Intersections, Merging Lanes, Lane Change Maneuvers


Findings

Traffic Network Optimization and Control with CAVs

Macroscopic (Traffic Assignment)

Better estimation of OD demands and travel latency functions when done jointly

CAVs improve resource allocation for everyone, e.g., they decongest a link so that Non-CAVs using this link benefit

Microscopic (Optimal Control) Optimal solution is analytically tractable and guarantees all the constraints Enters MZ at time Origin Merging Point Coordina Control Zone Main lane CAVs exit 🚥 ⁰. 🧰 . x_1, v_1, u_1 x_3, v_3, u_3 andomly arriving #3 CAVs Control zone (10 Merging Feasibility Enforcement Zone Randomly arriving Exits MZ Enters CZ CAVs ~41% travel time ~43% travel time ~50% fuel ~16% fuel ~58% fuel

Poster 2:45-3:45, 11/21/19