

# CPS: Breakthrough: A Dynamic Optimization Framework for Connected Automated Vehicles in Urban Environments

NSF CNS-1645681 (2017)

PI: C. G. CASSANDRAS CO-PI: I. Ch. PASCHALIDIS cgc@bu.edu yannisp@bu.edu



#### **CHALLENGE:**

- Make self-driving Optimal + Provably Safe
- Learn from data to transition from Selfish to Social optimality
- Develop real-time on-board controllers for Connected Automated Vehicles (CAVs)

### **SOLUTION:**

- Infrastructure level:
   Use Inverse Optimization to infer
   User Objective Functions
   from Data
- CAV level:

Track Optimal Control (OC) solutions for simple models with feedback controllers that satisfy Control Barrier Functions (CBFs) to guarantee safety constraints OCBF controllers



## **SCIENTIFIC IMPACT:**

- Inverse Problems in CPS (from data to unknown objectives)
- Bridge the gap between
   Optimal Control for any dynamic system and
   Safety guarantees
- From planning to real-time control, including optimizing Mobility on Demand systems

#### **BROADER IMPACT:**

- Make self-driving cars a reality
- New crop of students with expertise in state-of-the-art Autonomous Systems
- Impact quantification: ~40% better transportation systems

