
A Flexible Sampling-Based Approach to 
Integrated Task and Motion Planning

Choose actions with a 
black-box heuristic

Unsatisfaction semantics guides 
to precondition regions

Plan in composite space

● We plan in a composite space containing all symbolic and 
continuous state for a problem. 

● This makes solving TAMP equivalent to motion planning in 
composite space.

Approach

● We factor composite space by unique settings of symbolic 
state variables. Each unique setting is its own “universe” - a 
copy of the continuous state space. 

● This factorization makes the TAMP problem equivalent to 
finding a collision-free motion plan between the initial 
universe (and state) to the goal universe (and optionally state).

● We need to find regions of continuous space where we 
can take symbolic actions. This requires two insights:
1. We can partition task-domain predicates into 

geometric and symbolic predicates - predicates 
which do or do not (respectively) have a reasonable 
interpretation in terms of a test on continuous 
states.

2. We introduce a real-valued semantics for geometric 
predicates expressing how far a given state is from 
the nearest state which satisfies that predicate. We 
refer to this semantics as unsatisfaction semantics:

Unsatisfaction semantics provides a navigation 
function to regions of continuous space where 
arbitrary predicate formulae hold.

To decide what actions to attempt, we use a 
black-box heuristic implementing a minimal 
interface. We incorporate geometric feasibility 
information by adaptively reprioritizing suggested 
actions:

Evaluation
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We evaluate on problems from Lagriffoul et al. [2], 
primarily the “Clutter” problem. In this problem, shown 
above, a PR2 must move all of the blue and green sticks to 
the blue and green circles (respectively) while dealing with 
the red sticks obstructing grasps of the others.

We evaluate both on the original problem and a variant of 
the problem with the red sticks removed. We include this 
second variant to more directly illustrate our technique’s 
scaling with the number of goal-relevant objects.

Our planner does not produce optimal solutions (our 
optimality is dependent on the optimality of the motion 
planning algorithm chosen), but the size of the plans we 
produce scales linearly with the number of objects to be 
manipulated, as expected.

The planning time for our implementation is competitive 
with state-of-the-art TAMP solvers. These results have a 
few interesting properties:
● Planning time scales exponentially. This is expected, 

and largely due to the combinatorial nature of the 
problem. However, part of this growth likely stems from 
RRT’s bias toward exploration, which may cause us to 
visit unnecessary symbolic states.

● Including red blocks does impact planning time but 
does not significantly impact the scaling of planning 
time.

● This implementation uses naive choices for planner 
(RRT [6]) and heuristic (FF’s helpful actions [4]). We 
believe that we can significantly improve performance 
by choosing a more sophisticated planner (e.g. KPIECE 
[7], RRT-Connect [5]) and/or heuristic.

● The variability in planning times for our system is large. 
This comes directly from our choice of planner; RRT is 
known to have large variance in planning time and we 
do not use any mitigations (e.g. random restarts) for this 
issue.

Sampling-based architecture
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We propose a new approach to integrated task and motion planning 
based on the idea that TAMP is equivalent to motion planning in an 
appropriate state space. We construct such a space and demonstrate how 
we can solve TAMP problems by swapping out the state sampler and 
state space (and associated machinery, e.g. distance computation) in an 
ordinary sampling-based motion planner

● We combine the components of our approach into a composite state 
sampler. This biased-coin sampler chooses between ordinary uniform 
state sampling and heuristic-guided sampling: sampling a state in 
the precondition region for an action suggested by the action 
suggestion heuristic.

● We only modify the state sampler, so our approach can be combined 
with any sampling-based motion planning algorithm to adapt it into a 
task and motion planner.

In Brief

Implementation

We have implemented our approach in a proof-of-concept system for 
evaluation. The implementation, which is written in C++, chooses 
ordinary RRT [6] as its sampling-based motion planner and the FF [4] 
“helpful actions” heuristic as its action suggestion engine. We use 
motion primitives from OMPL [3], Bullet [1] for collision checking, and 
specify problems in the format proposed by Lagriffoul et al [2]. 

We require geometric predicates to provide simple Lua implementations, 
which we use for state testing and reverse-mode automatic 
differentiation to sample in precondition regions for actions.

Future Directions
● One of the most interesting features of our approach is its 

agnosticism to the planning algorithm, heuristic, and predicate 
semantics used. As such, we plan to experiment with various 
combinations of these to see how performance is affected.

● Our approach also lends itself to extensions for robust execution, via 
predicate semantics implementations for detecting unexpected 
symbolic states and easy replanning by connecting the new state to 
the existing planning structure.

● In this work, we tried to keep our assumptions weak and lightweight. 
We plan to investigate the performance vs. generality tradeoff of 
making stronger assumptions about the problems we will solve.

● Finally, we plan to increase the generality of unsatisfaction semantics 
to allow a broader class of geometric predicates, as well as exploring 
symbolic subspace sampling for improved robustness, performance, 
and generality.


