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Interpolation We evaluate on problems from Lagriffoul et al. [2],
e We plan in a composite space containing all symbolic and and motion State sampler primarily the "Clutter” problem. In this problem, shown
continuous state for a problem. validation above, a PR2 must move all of the blue and green sticks to
the blue and green circles (respectively) while dealing with

e This makes solving TAMP equivalent to motion planning in
composite space.

the red sticks obstructing grasps of the others.
We propose a new approach to integrated task and motion planning

holding_righthand_bsi=false ~  holding_righthand_bsi=true based on the idea that TAMP is equivalent to motion planning in an We evaluate both on the original problem and a variant of
— — appropriate state space. We construct such a space and demonstrate how the problem with the red sticks removed. We include this
on-surface_gs1_tablei-true| ol o we can solve TAMP problems by swapping out the state sampler and second variant to more directly illustrate our technique’s
Py A Fve = i hi ' ion) i ling with the number of goal-relevant object
state space (and associated machinery, e.g. distance computation) in an scaling w € number o goal-relevant objects.
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e We factor composite space by unique settings of symbolic
state variables. Each unique setting is its own “universe” - a

copy of the continuous state space.

e This factorization makes the TAMP problem equivalent to
finding a collision-free motion plan between the initial RRT >
universe (and state) to the goal universe (and optionally state).
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Unsatisfaction((or (at m; o)(at mg 0))) = optimality is dependent on the optimality of the motion

min (Unsatisfaction(At))(m,0), (Unsatisfaction(At))(mso, o) e We combine the components of our approach into a composite state planning algorithm chosen), but the size of the plans we

2= sampler. This biased-coin sampler chooses between ordinary uniform prod.uce scales linearly with the number of objects to be
\ % /_\ state sampling and heuristic-guided sampling: sampling a state in manipulated, as expected.
= the precondition region for an action suggested by the action

N

suggestion heuristic. Planning time scaling with number of objects
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e We only modify the state sampler, so our approach can be combined 103 { —— Without red blocks
——— with any sampling-based motion planning algorithm to adapt it into a ]|~ With red blocks
/ \ task and motion planner.
e We need to find regions of continuous space where we o
can take symbolic actions. This requires two insights: o = .
1. We can partition task-domain predicates into I m p I e m e ntat I O n £
geometric and symbolic predicates - predicates S
which do or do not (respectively) have a reasonable %
interpretation in terms of a test on continuous “Planet” Executable lanmer Module B ot - | / -
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Goal Flow with state-of-the-art TAMP solvers. These results have a
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- .- o> b b4 — : (o Uit i s few interesting properties:
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—¢ — —° —— k\ Parser |~ Tnitial Smte/J | { Flan Ammotator } . e Planning time scales exponentially. This is expected,
P Aeq = \/max(p, 0)% + max(q, 0)? / Problen / =--+{ Plan Sorilization |- and largely due to the combinatorial nature of the
V. g = mi problem. However, part of this growth likely stems from
p Ve q = min(p, q) s . .
< Amuotated RRT’s bias toward exploration, which may cause us to
ajectory

visit unnecessary symbolic states.

e Including red blocks does impact planning time but
does not significantly impact the scaling of planning
time.

e This implementation uses naive choices for planner
(RRT [6]) and heuristic (FF’s helpful actions [4]). We

.. ) : : believe that we can significantly improve performance

b I aCk' bOX heu r|St|C specify problems in the format proposed by Lagriffoul et al [2]. by choosing a more sc?phisticatZd plinnerp(e.g. KPIECE
|7], RRT-Connect [5]) and/or heuristic.

e The variability in planning times for our system is large.
This comes directly from our choice of planner; RRT is
known to have large variance in planning time and we
do not use any mitigations (e.g. random restarts) for this
issue.

Unsatisfaction semantics provides a navigation

function to regions of continuous space where We have implemented our approach in a proof-of-concept system for
arbitrary predicate formulae hold. evaluation. The implementation, which is written in C++, chooses

ordinary RRT [6] as its sampling-based motion planner and the FF [4]

" " “helpful actions” heuristic as its action suggestion engine. We use
Choose actions with a pfu u uge gine. We u

motion primitives from OMPL [3], Bullet [1] for collision checking, and

We require geometric predicates to provide simple Lua implementations,
which we use for state testing and reverse-mode automatic
differentiation to sample in precondition regions for actions.
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Future Directions
e One of the most interesting features of our approach is its Refe re n Ces

agnosticism to the planning algorithm, heuristic, and predicate

To decide what actions to attempt, we use a semantics used. As such, we plan to experiment with various
. e . . . . . . . [1] Erwin Coumans et al. Bullet Physics Library. 2013.
black-box heuristic lmplementlng a minimal combinations of these to see how performance is affected. [2] Fabien Lagriffoul, Neil T. Dantam, Caelan Garrett, Aliakbar Akbari, Siddharth
interface. We il’lCOI’pOl'ate geometric feaSIblllty e Qur appr()ach also lends itself to extensions for robust execution) via Srivastava, and Lydia E. Kavraki. “Platform-Independent Benchmarks for Task and
‘0 f . b d vel « e e s d . . . . . Motion Planning”. In: IEEE Robotics and Automation Letters 3.4 (Oct. 2018), pp.
inrormation by adaptively reprioritizing suggeste pred1cate semantics 1mplementat10ns for detectlng unexpected 3765-3772. ISSN: 2377-3766. 2377-3774.
actions: symbolic states and easy replanning by connecting the new state to [3] Ioan A. ,Sucan, Mark Moll, and Lydia E. Kavraki. “The Open Motion Planning
h . . . Library”. In: IEEE Robotics & Automation Magazine 19.4 (Dec. 2012), pp. 72-82. DOL:
the existing plannlng structure. 10.1109/MRA.2012.2205651
Priority(a) e In this work, we tried to keep our assumptions weak and lightweight. [4] Jérg Hoffmann and Bernhard Nebel. “The FF Planning System: Fast Plan
riori a . . . i 1sti ? . ifici i
P(a)oc . y . We plan to investigate the performance Vs, generahty tradeoff of Generation through Heu.rlstlc Search”. In: Journal of Artificial Intelligence Research 14
(1+ Fall(a)l)(l + 7 *%/Success(a)) — v * Fall(ajsuccess(a) . . : (2001), pp. 263-312. ISSN: 10769757.
making stronger assumptions about the problems we will solve. 5] Kuffner Jr, J. J., & LaValle, S. M. (2000, April). RRT-connect: An efficient approach to
° ; . : . . . single-query path planning. In ICRA (Vol. 2).
Flnally’ we plan to increase the gen_erahty .Of unsat1sfact10n semar}tlcs [6] Steven M. Lavalle. “Rapidly-Exploring Random Trees: A New Tool for Path
_ to allow a broader class of geometric predicates, as well as exploring Planning”. (May 1999).
Heuristic priority . . . . . . . .
B Number offailed attempts symbolic subspace sampling for improved robustness, performance, 7] $ucan, I. A, & Kavraki, L. E. (2009). Kinodynamic motion planning by
BEEE  Number of successful attempts interior-exterior cell exploration. In Algorithmic Foundation of Robotics VIII (pp.

Scaling factor and generahty- 449-464). Springer, Berlin, Heidelberg.



