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Planning in Robotics Domains

Varied, huge, stochastic, and messy
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attribute-rich, prob-
abilistic environments
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Efficient, non-domain-specific planning
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Non-Hierarchical Planning

PO
Without hierarchy, consider all \
possible action sequences from L
all states |
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Top-Down Hierarchical Planning

PO
« Given hierarchy, consider possible \

sequences involving relevant L
subtasks |




Abstract MDPs (AMDPSs)

Markov Decision Processes, plus abstraction:

. MDP (MDP): <5, 4 T, R,E>:

» States, actions, transitions, rewards, terminal states

« Abstract MDPs add state mapping functions:
<S5 AT, R,E,F>

« F':s— sfprojects states from ground level to current
level of abstraction

N,S,E.W

" Agentto I

Less abstract More abstract




Projecting to Abstract States

Cleanup task requires going red — green — blue

Don’t need exact
location when
planning next
room to visit

X, Y coordinates
projected up to
appropriate level

Fl
¢ loc<7,2> — loc<“red room”>



Classic Taxi Domain + Task Hierarchy
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Taxi Domain (Dietterich, 2000) A Task Hierarchy for Taxi
Agent is taxi, must take passenger to (rectangles are subgoals,

depot (red, yellow, green, blue) leaf nodes are ground actions)
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Taxi Representation as AMDP

=D
= O

N

| [ Pickup ] [ Navigate ] [ Putdown J

[ south J east

i




AMDP Planning: Taxi

« Domain is too small to benefit
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Cleanup Domain

« State: Agent and object location /
orientation, door lock boolean

e Actions: N, S, E, W, Pull

« Stochastic transitions possible.

* Objectives: Take specified object
or agent to specified room



Planning over AMDPs in Cleanup

« Complex task 5250 —Base Planner
. E)ZOO —AMDPs
« Many objects 3
S 150
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R-mAX + AMDPs (R-AMDPs) | PALM

Plan top-down starting at R-AMDP-Plan(H, Root)

Determine next action

Ground to subgoal (A)MDP

Recurse to ground MDP

On return, update model for T and R
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2. Learning Hierarchies

Strategies:
g 25 Toy MR
. . . % 2ol — DAQN

- Quality of behaviors derived | ¢ i;’/’ — Intrinsic
from types of approximate 2 — Intrinsic+L
abstractions (ICML 2016) § o=—==—o= — DoubleDON |

Millions of Frames

« Combine deep T="7J
reinforcement learning with 14~ (Sa| - 1)
model-based approaches using lhmodel = =" 3
expert-provided state AL
abstractions (AAMAS 2018) o — (ﬂ“ bolt + bolt)

o (1-7)2

* Learn AMDP hierarchies, AL L g )
rewards, and transition Do = mult
functions directly from data (1—9)?

(AAAI 2019, under submission)

None of these is perfect!



Approximate State Abstractions

o Approximate state abstractions: nearly-identical

situations = equivalent .
Vsese Ve (s) — VgGA (s) < 2eny

e Qfunctions — 1
— Ty
« Transition and S 1+Zl(|50)|3_ 1)
—

Reward Function "
(m + ekporr + kbolt)

e Boltzmann Distributions "
: 1 _~ kmu
over agent actions (l—v T “)

Nmult =
(1—7)°

[Dave Abel, D. Ellis Hershkowitz & Michael L. Littman]



Deep Abstract Q Networks

o Model learning with R-Max to learn AMDP transition
and reward models.

o HierGen to learn hierarchies for tasks using data
provided by example solution trajectories
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Planning Example

Planning with Abstract
Markov Decision Processes

[Gopalan et al. ICAPS-17]
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