A Framework for Validation and Monitoring of Robotic Surgery Systems

Kai Liang, Feng Cao, Zhuofu Bai, Mark Renfrew, Soumya Ray (co-PI), Andy Podgurski (co-PI), M. Cenk Çavuşoğlu (PI) Department of Electrical Engineering and Computer Science, Case Western Reserve University

1. Robotic Surgery Systems

- Cyber-physical systems using robotic systems to aid surgical procedures
- Small incision, less blood loss, less pain, shorter recovery time, minimize side effects

4. Testbed and Simulation Environment

7. Empirical Evaluation

We evaluate 3 DBNs on 3 A&A events and plot ROC graphs. **DBNs**:

- HS: standard joint hardware/software model
- HS10: joint hardware-software model looking ahead 10 steps
- HWOnly: hardware variables only.

A&A Events:

- Encoder Failure: A&A event caused by hardware component failure
- Out-Of-Workspace: A&A event caused by software bug (missing boundary condition check)
- Sweep: A&A event caused by inadequate control or imperfect target geometry estimate or unexpected target motion

2. Adverse and Anomalous Events

[D]uring a da Vinci's beating heart double vessel coronary artery bypass graft procedure at the hospital, there was an unexplained movement on the system arm [which] caused the feet at the distal end of the endowrist stabilizer instrument to tip downward *resulting* in damage to the myocardium of the patient's left ventricle. (MAUDE report, FDA 2008)

- Unexpected events that potentially injure patients
 - Inadequate haptic control, violations of a motion or force limits, system crashes and hangs, software bugs causing unexpected behavior

3. Phased Validation Approach

Feedback on the actual usage envelope is used to improve simulation

5. Software Architecture and Data Collection

0.6 0.6 0.4 HS ------HS10 ------0.2 **HS10** HWOnly HWOnly 0.15 0.05 0.15 0.1 0.05 0.1 False positive rate False positive rate ROC graphs for detecting out-of-workspace and sweep A&A events. 0.8 0.6 0.6 0.4 04

ROC graphs predicting sweep A&A events, 0.5s (left) and 1s (right) before the event.

HS

HS10

0.15

HWOnly

0.1

False positive rate

0.05

8. Current Research Directions

- Hardware validation of the developed methods and algorithms
- Constructing a low-dimensional usage envelope of the system using the learned DBNs

Acknowledgements

This work was supported in part by the NSF Cyber-Physical Systems program under grant CISE CNS-1035602.

dynamic Bayesian networks (DBNs).

software/hardware state space of the system using

We model the time-evolution of the joint

6. Modeling Joint Hardware--Software State

- The testbed system is modeled with 30 hardware and 87 software variables.
- Hardware variables represent observed sensor data, software variables represent intermediate controller computations.

HS -----HS10 -----

HWOnly

0.05

0.1

False positive rate

0.15

• Using the learned DBNs and causal inference to localize faulty controller code.

References

[1] M. C. Cavusoglu, Medical Robotics in Surgery, in Wiley Encyclopedia of Biomedical Engineering, M. Akay, Editor, 2006, John Wiley and Sons, Inc.

[2] FDA, Adverse Event Report 2955842-2008-01144: Intuitive Surgical Inc., Da Vinci S Surgical System Endoscopic Instrument Control System, July 15, 2008.

[3] O. Bebek, M. J. Hwang, and M. C. Cavusoglu. Design of a Parallel Robot for Needle Based Interventions on Small Animals. IEEE/ASME Trans. on Mechatronics, 2011

[4] R. Jackson, and M. C. Cavusoglu. *Modeling of Needle-Tissue Interaction Forces during Surgical* Suturing. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2012), Minneapolis, MN, May 14-18, 2012, pp. 4675-4680.

[5] R. Jackson and M. C. Cavusoglu. Needle Path Planning for Autonomous Robotic Surgical Suturing. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2013), Karlsruhe, Germany, May 6-10, 2013. Finalist for the best medical robotics paper award. [6] K. Liang, F. Cao, Z. Bai, M. Renfrew, M. C. Cavusoglu, A. Podgurski and S. Ray. Detection and Prediction of Adverse and Anomalous Events in Medical Robots. In Proceedings of Innovative Applications of Artificial Intelligence, 2013.

[7] M. Renfrew, Z. Bai, and M. C. Cavusoglu. Particle Filter Based Active Localization of Target and Needle in Robotic Image-Guided Intervention Systems. Proceedings of the 9th IEEE International Conference on Automation Science and Engineering (CASE 2013).