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Abstract of the Results Reported in This Poster

This post considers a problem of target or source localization based on the measurements from a mobile sensor or a network of sensors. The assumption Is that the received signal strength is strictly monotonic with the
distance between the target and the sensor. No explicit signal propagation model, neither the structure nor the mathematical description, is assumed or used in localization. It shows that this mere knowledge of monotonicity
suffices in locating the unknown target in the absence of noise. Further in the presence noise, robust localization algorithms are developed and analyzed by exploiting various forms of angular, temporal and spatial averages.
The asymptotic convergence results have been established in the presence of noise and further the finite step performance results are developed.
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be unknown source location, sensor location, the distance between the sensor and the source and the The idea Is an average of multiple samples to average out the effect of noise. Let the length of the rectangle
received signal strength at sensor x(t). Assume gldi) = glda) if and only if d; < ds. in the horizontal direction be I(units) and I/n be the sampled step. Then the received signal along the
Then, s'(t) =s'(x(t))> 0 implies that the sensor is getting closer to the source and s'(t) s'< 0 implies that horizontal path can be written as
the sensor is moving away from the source. sn(k —kz) = su((k — ko) Ax)

Y kAz |
| o | = e ey = ( ( ] | ) — 1y ) +v(kAx), E=0,1.....n
. i ’
# ! : ! : .
, ; ; and determine | I/ AL ._
dr(t) : \ : ; k. = argming — 1y
rHJ. ’ ’ | i ] k -.’?
.. o | i
r(t;) \ : : by solving ky = arg max s (k — kz) = arg Il’l;l.}{‘{gh (k) +v(k)}.
/ | : - ; l - To be robust, define
i & 5 ! _
z(t) — ) sn(k—ke) = 7 Z sn(k—ks) ke =arg max sy (k — kz)
Fig. 1. Loecal maximum and the source location. Fig. 2. Illustration of the result.
_ _ Result 4. The estimate i& converges to k. in probability.
Result 1: Let x(t) be the sensor path. Assume ds/dx and dx/dt exist and are continuous. Suppose s(x(t))

achieves two local maxima at x(ti) and x(t]) respectively. Further assume that the tangent lines dx(ti)/dt — -
and dx(tj )/dt are linearly independent. Then in the absence of noise, the unknown source location is Quantification of Errors for a Finite L
uniguely determined at the intersection of two normal lines at x(ti) and x(t]) respectively.

Quantification of errors can be done by extremely theory. Let 2n = max{vy,va, ...,y |, Then,
The result is illustrated in Fig 2 with two line segments of trajectory. il S
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| . . Simulation Results:
zi(Bg(1)) = arg 111__i£1r] |2;(0) — y*|| Holz) = argmax gi(t).
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Fig. 3. Illustration of sensor circular movement. 108.51 152 15
Fig. 4. Illustration of angular averages. 100 - S
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Result 2: In the absence of noise, the line connecting the center x(i) to the source location is uniquely 94.78 5.68

determined. Table 1

The estimates y's and their variances in the first and second
parentheses respectively.

Robust Algorithms: Angular Average

O - Py, (estimation variance) and the true but unknown p. - py (Ip = [, = 400(unit), Az = Ay = 0.1)
A problem is that local maxima and consequently, source locations are hard to calculate reliably in the Ar-m—Dy-m—28 | Ar-m—Dg-m—10] Az-m—Ay-m—15 ] Az-m— Ay-m—20
presence of noise. So a key question is how to robustly determine if s(x(t)) achieves a local maximum SNR» — SNR. — _3dB
or not in the presence of noise. Let, as in Figure 4, (i) = ko(i)d#, for some ko(i) € [0, 2m + 2). L=3 | .7718(.0752),.8740 7600(.0765), .9640 6712(.1015),.9990 5676(.1109),.9990
L=5 | .9326(.0239),.9370 9106(.0314),.9890 8185(.0642), 1.0000 | .0708(.0967), 1.0000
si(k) = si(k00) = g;(kdl) + v;(kdl) = gi(k) + vi(K). L =10 | .0947(.0012), .9950 .9935(.0018),0.9990 0680(.0125), 1.0000 0104(.0340),1.0000
. . SNR; = SNR, = 0dB
Eo(i) = argmin — E (si(k + 7) — si(k — ))°. T — EpR— — ——
" Tk omée— L=3 | .9533(.0143), .9650 9467(.0176),.9840 .8003(.0368), 1.0000 7860(.0709),1.0000
JT=
, _ _ L=25 | .9959(.0010), .9910 .9945(.0011),1.0000 0656(.0133), 1.0000 0097(.0327),1.0000
k+4j=kxjmod(2m+ 2). , , -
| L =10 | 1.0000(0), 1.0000 9999(0),1.0000 2003(.0368), 1.0000 0927(.0014),1.0000
) ) SNRh = SNR, = 5dB
to(z) = ko(2)o6. L= 1.0000(0), 1.0000 1.0000(0),1.0000 .9984(.0002), 1.0000 9917(.0012),1.0000
T - '
PO = L <5 ¢ y2 — x2(i) L=5 1.0000(0), 1.0000 1.0000(0),1.0000 1.0000(0), 1.0000 0993(.0001),1.0000
iy = arg mn — (Hg(2)—arctan = ) -
L=

('-’}1 ) = 1 — x1() 1.0000(0), 1.0000 1.0000(0).1.0000 1.0000(0), 1.0000 1.0000(0),1.0000
=1 ° Table 2

The estimated probability g, - g,. its variance in parenthesis based on 1000 Monte Carlo runs and the true p. - py,.
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