

A Knowledge Representation and Information Fusion Framework for Decision Making in Complex Cyber-Physical Systems PI: Soumik Sarkar, PhD (soumiks@iastate.edu) Department of Mechanical Engineering, Iowa State University, Ames, IA

IOWA STATE UNIVERSITY Department of Mechanical Engineering

Project Objectives

- Develop a data-driven modeling framework for CPSs that reliably captures cyber and physical subsystem behaviors as well as their interaction characteristics.
- To address the need of performance monitoring and fault detection & diagnostics (FDD) in distributed CPSs (e.g., integrated building), with cyber attacks and physical anomalies.
- Challenge: Inference and root cause analysis in complex CPSs with multiple (possibly unforeseen) anomalies at the same time, system wide impact estimation in a large interconnected system.

Previous work: Anomaly detection

- A data-driven framework for **system-wide** anomaly detection was proposed, noted as the STPN+RBM model, to implement unsupervised anomaly detection with spatiotemporal causal graphical modeling.
- Validation on synthetic data and real system shows the proposed framework can handle mixed data types, local and global anomalies, and capture multiple nominal modes.

Root-cause analysis of complex CPSs via spatiotemporal causal graphical modeling

Artificial anomaly association (A³)

Sequential state switching (S³)

Accuracy metrics

 $\sum_{j=1}^{n^2} \sum_{i=1}^m \chi_1(T_{ij} = P_{ij})$

where Tij denotes the ground truth state (nominal/ anomalous) of the jth pattern of the ith test sample. P^{ij} is the corresponding predicted state.

$Recall = \frac{TP}{TP + FN} Precision =$	$\frac{TP}{TP + FP}$
$F - measure = \frac{2}{1/precision + 1/2}$	\overline{recall}

where TP is true positive rate, FN is false negative rate, and FP is false positive rate

Case study with synthetic data

Learning of multiple nominal modes and root-cause analysis of failed patterns

Table 1: Root-cause analysis results in S^3 method and A^3 method with synthetic data. Testing samples Accuracy α_1 (%) 11,400 57,000 93.12296,400 57,000 98.6695.95

- Dataset: 5-node graphical model, 6 nominal operation modes, anomalies in 30 cases including 5 in one failed pattern, 10 in two failed patterns, 10 in three failed patterns, and 5 in four failed patterns.
- Methods: Artificial anomaly association (A³) and Sequential state switching (S³).

Root-cause analysis of failed node

Dataset: 5-node and 30-node systems, 5 and 30 anomalies via simulating every node failure respectively.

Methods: Sequential state switching (S³) and Vector autoregressive (VAR) model.

Scalability analysis

Table 2: Comparison of root-cause analysis results with S^3 and VAR.							
Approach	Dataset 2 (5 nodes)			Dataset 3 (30 nodes)			
	$ \{\Lambda^{ano}\} $	$ \{\Lambda^\epsilon\} $	$\epsilon~(\%)$	$ \{\Lambda^{ano}\} $	$ \{\Lambda^\epsilon\} $	ϵ (%)	
S^3	13	2	15.38	653	18	2.76	
VAR	20	4	20.00	521	113	21.69	

STPN for recovering graphical models

•To validate the efficacy of STPN in interpreting causality in graphical models, case studies are carried out and compared with VAR model.

Conclusions & Future Work

- Sequential state switching (S³) and artificial anomaly association (A^3) — are proposed for rootcause analysis in complex cyber-physical systems.
- With synthetic data, proposed approaches are validated and showed high accuracy in finding failed patterns and diagnose for anomalous node.

Further works will pursue the following:

- Inference approach in node failure including single node and multiple nodes
- Detection and root-cause analysis of simultaneous multiple faults in distributed complex systems.

Team & Acknowledgments

Graduate Students: Kin Gwn Lore, Sambuddha Ghosal, Zhanhong Jiang

Undergraduate Students: Minghao Wang (Fall REU) PostDoc Fellow: Chao Liu, PhD

Grant Information

Supported by the National Science Foundation under Grant No. CNS-1464279.