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Project Objectives Root-cause analysis of complex CPSs via spatiotemporal causal graphical modeling STPN for recovering graphical models

» Develop a data-driven modeling framework for Artificial anomaly association (A3) *To validate the efficacy of STPN in interpreting
CPSs that reliably captures cyber and physical sub- u-f-- B — causality In graphical models, case studies are
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cyber attacks and physical anomalies.
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» Challenge: Inference and root cause analysis in Sequential state switching (S°) Accuracy metrics
complex CPSs with multiple (possibly unforeseen)
anomalies at the same time, system wide impact
estimation In a large interconnected system.
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Conclusions & Future Work

» Sequential state switching (S3) and artificial

anomaly association (A3)— are proposed for root-

» Dataset: 5-node graphical model, 6 cause analysis in complex cyber-physical systems.
nominal operation modes, anomalies in 30
cases including 5 in one failed pattern, 10
In two failed patterns, 10 in three failed

ﬁ - - patterns, and 5 in four failed patterns.
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Learning sub-system
behaviors and pair-
wise interaction

patterns (STPN)

Weak learner

 With synthetic data, proposed approaches are
validated and showed high accuracy in finding
failed patterns and diagnose for anomalous node.

Further works will pursue the following:
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