A science of CPS robustness

(1)

(2)

Paulo Tabuada

Cyber-Physical Systems Laboratory UCLA Dept. of Electrical and Computer Engineering

Motivation: the problem with current specification mechanisms

- Cyber-Physical Systems (CPSs) are typically non-robust
 - a small deviation from the design assumptions can lead to a large deviation in the desired behavior;
- Specifications for cyber components are typically written as:

where φ is an assumption about the environment and ψ is a system guarantee.

 $\varphi \Rightarrow \psi$

The usual semantics of propositional logic dictates that (1) is equivalent to: $\neg \varphi \lor \psi$.

If the assumption is violated, nothing can be said about the guarantee.

Can we change the semantics of (1) so that "small" violations of φ lead to "small" violations of ψ ?

rLTL Verification: now faster than ever before!

- ▶ rLTL Verification can be made faster by using *Temporal Testers* with the fragment $\widetilde{rLTL}(\mathcal{P})$.
 - Temporal Testers are discrete transition systems equipped with justice conditions that detect if a computation satisfies an LTL formula.
 - Consider the rLTL fragment $\{\psi, \psi_1 \Rightarrow \psi_2 \mid \psi, \psi_1, \psi_2 \in \widetilde{rLTL}(\mathcal{P})\}$, where $\widetilde{rLTL}(\mathcal{P})$ is the set of all rLTL formulas that do not contain robust implications or robust releases.
 - For an rLTL formula in the above fragment, and for each bit *i*, we construct optimized Temporal Testers of size

 $2|\varphi| \leq |T(\varphi_i)| \leq 3|\varphi|,$ testing if the a given infinite word satisfies the LTL formula $ltl(i, \varphi)$.

Genesis of Robust Linear-time Temporal Logic (rLTL)

rLTL adopts a 5-valued semantics to capture robustness: the truth value of an rLTL formula is interpreted as corresponding to *true* or to different shades of *false*. Consider the LTL formula:

 p

being true if the atomic proposition p holds at every time step, and false otherwise. Among all the different ways in which $\Box p$ can be violated, there is the following preference order:

- \triangleright p only fails to hold at finitely many time instants (i.e., that $\Diamond \Box p$ holds);
- \triangleright *p* holds at infinitely many time instants (i.e., that $\Box \diamondsuit p$ holds);
- \triangleright *p* holds at finitely many time instants (i.e., that $\diamondsuit p$ holds);
- ▷ p fails to hold at every time instant (i.e., that $\Box \neg p$ holds).
- ▶ This suggests a new semantics for LTL, for which the robust version of the always operator, , is *five valued* in $\mathbb{B}_5 = \{0000, 0001, 0011, 0111, 1111\}$.

► **Theorem:** For any rLTL formula $\varphi \in \{\psi, \psi_1 \Rightarrow \psi_2 \mid \psi, \psi_1, \psi_2 \in \widetilde{rLTL}(\mathcal{P})\}$, the rLTL verification problem is solved by performing at most 4 LTL verification steps, each using an automaton of size at most $\mathcal{O}\left(2^{|\varphi|-k(\varphi)}3^{k(\varphi)}\right), \qquad (6)$

where $k(\varphi)$ is the number of \square operators in the rLTL formula φ .

rLTL Verification in practice - Evrostos: The rLTL Verifier

- The tool Evrostos solves the model checking problem for the aforementioned rLTL fragment. It consists of two components:
 - an rLTL-to-LTL translator;
 - ▷ the popular symbolic model checker NuSMV.
- The time required to solve the rLTL verification problem, t_{rLTL} , is larger than the corresponding time for the LTL verification problem, t_{LTL} . We write $t_{LTL} = 2^{|\varphi|}$, $t_{rLTL} = 2^{\zeta|\varphi|}$, and ask what is the exponent ζ (time complexity blowup) that describes the overhead:

$$=1+rac{log\left(rac{t_{rLTL}}{t_{LTL}}
ight)}{ertarphiertarphiert$$

Time complexity for rLTL, being proportional to $3^{|\varphi|}$, implies an upper bound for ζ of $log_2(3) = 1.58$. As shown below for the telephone system model [4], the time complexity of rLTL for the fragment we are considering is close to that of LTL.

Robust Linear-time Temporal Logic (rLTL)

- rLTL has the same syntax as LTL. Formulas are built from:
 - ▷ atomic propositions: $p, q, r, ... \in \mathcal{P}$;
 - ▷ Boolean connectives: \land , \lor , \neg , and \Rightarrow ;
 - ▷ temporal operators: \odot , \Box , and \diamondsuit .
- We define the mapping ltl : {1,...,4} × rLTL(P) → LTL(P) from each bit of an rLTL formula and the set of all rLTL formulas on P, rLTL(P), to the set of all LTL formulas on P, LTL(P) as:

Operator	Symbol	Semantics, for $p \in \mathcal{P}$, $\varphi, \psi \in rLTL(\mathcal{P})$.
Atomic Proposition		$\forall 1 \leq i \leq 4 : \operatorname{ltl}(i, p) = p.$
Negation	_	$\forall 1 \leq i \leq 4 : \operatorname{ltl}(i, \neg \varphi) = \neg \operatorname{ltl}(1, \varphi).$
Disjunction	\vee	$\forall 1 \leq i \leq 4 : \operatorname{ltl}(i, \varphi \lor \psi) = \operatorname{ltl}(i, \varphi) \lor \operatorname{ltl}(i, \psi).$
Conjunction	\wedge	$\forall 1 \leq i \leq 4 : \operatorname{ltl}(i, \varphi \land \psi) = \operatorname{ltl}(i, \varphi) \land \operatorname{ltl}(i, \psi).$
Robust Implication	\Rightarrow	$\forall 1 \leq i \leq 3 : \operatorname{ltl}(i, \varphi \Longrightarrow \psi) = (\operatorname{ltl}(i, \varphi) \Longrightarrow \operatorname{ltl}(i, \psi)) \land \operatorname{ltl}(i + 1, \varphi \Longrightarrow \psi),$
		$ltl(4, \varphi \Rrightarrow \psi) = (ltl(4, \varphi) \Rightarrow ltl(4, \psi)).$
Next	\odot	$\forall 1 \leq i \leq 4 : \operatorname{ltl}(i, \odot \varphi) = \operatorname{O} \operatorname{ltl}(i, \varphi).$
		$\operatorname{ltl}(1, \Box \varphi) = \Box \operatorname{ltl}(1, \varphi),$

Formula	rLTL	rLTL	LTL	LTL	Time Complexity
Гоппиа	Truth Value	Time (s)	Truth Value	Time (s)	Blowup
$\boxdot (\neg(tt1 \land d12) \lor td2)$	0001	319.10	FALSE	265.29	1.04
\boxdot (¬(<i>msg</i> 2)∨					
$((d21 \land tcs12) \lor (d24 \land tcs42)))$	0011	26.71	FALSE	11.54	1.11
$\boxdot (\neg(\textit{tcs}12 \land \textit{ring}1) \lor \textit{ringt}3)$	0001	157.95	FALSE	117.01	1.06
\boxdot (¬(<i>msg</i> 3)∨					
$((d31 \land tcs13) \lor (d34 \land tcs43)))$	0011	139.25	FALSE	55.91	1.12
$\boxdot (\neg(try1) \lor \odot (ringt1 \lor busyt1))$	0011	541.17	FALSE	220.24	1.16
$\boxdot (\neg(tt1 \land d13) \lor td3)$	1111	10.43	TRUE	3.01	1.26
\boxdot (¬(<i>tcs</i> 13)∨					
$\boxdot (\neg (d31 \land (ringt3 \lor tt3))))$	0001	94.46	FALSE	91.92	1.00
\boxdot (¬(<i>tcs</i> 42)∨					
$\boxdot (\neg (d24 \land (ringt2 \lor tt2))))$	0001	11.10	FALSE	7.53	1.05

Future work

Relationships with existing notions of robustness in control theory;
 rLTL synthesis problem.

Robust Always

 $\begin{aligned} & \operatorname{ltl}(2, \boxdot \varphi) = \diamondsuit \square \operatorname{ltl}(2, \varphi), \\ & \operatorname{ltl}(3, \boxdot \varphi) = \square \diamondsuit \operatorname{ltl}(3, \varphi), \\ & \operatorname{ltl}(4, \boxdot \varphi) = \diamondsuit \operatorname{ltl}(4, \varphi). \end{aligned}$

Robust Eventually $\diamond \quad \forall 1 \leq i \leq 4 : \operatorname{ltl}(i, \diamond \varphi) = \diamond \operatorname{ltl}(i, \varphi).$

•

The rLTL semantics is defined as a function V : (2^P)^ω × rLTL(P) → B₅, where for any σ ∈ (2^P)^ω, φ ∈ rLTL(P) and 1 ≤ i ≤ 4, the *i*th bit V_i(σ, φ) of the valuation V(σ, φ) is given by

 $V_i(\sigma, \varphi) = W(\sigma, \operatorname{ltl}(i, \varphi)),$

where $W(\sigma, \psi)$ is the truth value of the LTL formula ψ evaluated on σ .

Tractability:

Theorem: The verification and synthesis problems for an rLTL formula φ are decidable with the following time complexity:

References

(4)

1. Evrostos: The rLTL Verifier

- Tzanis Anevlavis, Daniel Neider, Matthew Philippe and Paulo Tabuada *Submitted to* the 22nd ACM International Conference on Hybrid Systems: Computation and Control (HSCC 2019).
- 2. Verifying rLTL formulas: now faster than ever before!
- Tzanis Anevlavis, Matthew Philippe, Daniel Neider and Paulo Tabuada *To appear* in the 57th IEEE Conference on Decision and Control (CDC 2018).
 3. Robust Linear Temporal Logic
- Paulo Tabuada and Daniel Neider
- 25th EACSL Annual Conference on Computer Science Logic (CSL 2016).
- Feature integration using a feature construct Malte Plath and Mark Ryan

Science of Computer Programming 41, 1 (2001), 53 - 84.

http://www.cyphylab.ee.ucla.edu

NSF Project Award Number: 1645824, A science of CPS robustness