
A science of CPS robustness
Paulo Tabuada

Cyber-Physical Systems Laboratory
UCLA Dept. of Electrical and Computer Engineering

Motivation: the problem with current specification mechanisms

I Cyber-Physical Systems (CPSs) are typically non-robust
. a small deviation from the design assumptions can lead to a large deviation in

the desired behavior;
I Specifications for cyber components are typically written as:

') (1)
where ' is an assumption about the environment and is a system guarantee.

I The usual semantics of propositional logic dictates that (1) is equivalent to:
¬' _ . (2)

I If the assumption is violated, nothing can be said about the guarantee.
I Can we change the semantics of (1) so that “small” violations of ' lead to

“small” violations of ?

Genesis of Robust Linear-time Temporal Logic (rLTL)

I rLTL adopts a 5-valued semantics to capture robustness: the truth value of an
rLTL formula is interpreted as corresponding to true or to di↵erent shades of false.
Consider the LTL formula: u p (3)

being true if the atomic proposition p holds at every time step, and false
otherwise. Among all the di↵erent ways in which u p can be violated, there is the
following preference order:
. p only fails to hold at finitely many time instants (i.e., that Éu p holds);
. p holds at infinitely many time instants (i.e., that uÉ p holds);
. p holds at finitely many time instants (i.e., that É p holds);
. p fails to hold at every time instant (i.e., that u ¬p holds).

I This suggests a new semantics for LTL, for which the robust version of the always
operator, }, is five valued in B5 = {0000, 0001, 0011, 0111, 1111}.

Robust Linear-time Temporal Logic (rLTL)

I rLTL has the same syntax as LTL. Formulas are built from:
. atomic propositions: p, q, r , ... 2 P ;
. Boolean connectives: ^, _, ¬, and V;
. temporal operators: j, }, and ã.

I We define the mapping ltl : {1, . . . , 4}⇥ rLTL(P) ! LTL(P)
from each bit of an rLTL formula and the set of all rLTL formulas on P ,
rLTL(P), to the set of all LTL formulas on P , LTL(P) as:

Operator Symbol Semantics, for p 2 P , ', 2 rLTL(P).
Atomic Proposition 81 i 4 : ltl(i , p) = p.

Negation ¬ 81 i 4 : ltl(i ,¬') = ¬ltl(1,').

Disjunction _ 81 i 4 : ltl(i ,' _) = ltl(i ,') _ ltl(i ,).

Conjunction ^ 81 i 4 : ltl(i ,' ^) = ltl(i ,') ^ ltl(i ,).

Robust Implication V 81 i 3 : ltl(i ,'V) = (ltl(i ,')) ltl(i ,)) ^ ltl(i + 1,'V),
ltl(4,'V) = (ltl(4,')) ltl(4,)).

Next j 81 i 4 : ltl(i ,j ') =b ltl(i ,').

Robust Always }

ltl(1,} ') =u ltl(1,'),
ltl(2,} ') =Éu ltl(2,'),
ltl(3,} ') =uÉ ltl(3,'),
ltl(4,} ') =É ltl(4,').

Robust Eventually ã 81 i 4 : ltl(i ,ã ') =É ltl(i ,').

I The rLTL semantics is defined as a function V : (2P)! ⇥ rLTL(P) ! B5, where
for any � 2 (2P)!,' 2 rLTL(P) and 1 i 4, the ith bit Vi(�,') of the
valuation V (�,') is given by

Vi(�,') = W (�, ltl(i ,')), (4)

where W (�,) is the truth value of the LTL formula evaluated on �.
I Tractability:

Theorem: The verification and synthesis problems for an rLTL formula ' are
decidable with the following time complexity:

rLTL LTL

Verification 5|'| 2|'|

Synthesis 25
|'|

22
|'|

.

rLTL Verification: now faster than ever before!

I rLTL Verification can be made faster by using Temporal Testers with the fragment
]rLTL(P).
. Temporal Testers are discrete transition systems equipped with justice

conditions that detect if a computation satisfies an LTL formula.
. Consider the rLTL fragment { , 1 V 2 | , 1, 2 2]rLTL(P)}, where

]rLTL(P) is the set of all rLTL formulas that do not contain robust implications
or robust releases.

. For an rLTL formula in the above fragment, and for each bit i , we construct
optimized Temporal Testers of size

2|'| |T ('i)| 3|'|, (5)

testing if the a given infinite word satisfies the LTL formula ltl(i ,').

I Theorem: For any rLTL formula ' 2 { , 1 V 2 | , 1, 2 2]rLTL(P)}, the
rLTL verification problem is solved by performing at most 4 LTL verification steps,
each using an automaton of size at most

O

⇣
2|'|�k(')3k(')

⌘
, (6)

where k(') is the number of } operators in the rLTL formula '.

rLTL Verification in practice - Evrostos: The rLTL Verifier

I The tool Evrostos solves the model checking problem for the aforementioned rLTL
fragment. It consists of two components:
. an rLTL-to-LTL translator;
. the popular symbolic model checker NuSMV.

I The time required to solve the rLTL verification problem, trLTL, is larger than the
corresponding time for the LTL verification problem, tLTL. We write tLTL = 2|'|,
trLTL = 2⇣|'|, and ask what is the exponent ⇣ (time complexity blowup) that
describes the overhead:

⇣ = 1 +
log

⇣
trLTL
tLTL

⌘

|'|
. (7)

Time complexity for rLTL, being proportional to 3|'|, implies an upper bound for ⇣
of log2(3) = 1.58. As shown below for the telephone system model [4], the time
complexity of rLTL for the fragment we are considering is close to that of LTL.

Formula
rLTL

Truth Value
rLTL

Time (s)
LTL

Truth Value
LTL

Time (s)
Time Complexity

Blowup
} (¬(tt1 ^ d12) _ td2) 0001 319.10 FALSE 265.29 1.04

} (¬(msg2)_
((d21 ^ tcs12) _ (d24 ^ tcs42))) 0011 26.71 FALSE 11.54 1.11

} (¬(tcs12 ^ ring1) _ ringt3) 0001 157.95 FALSE 117.01 1.06

} (¬(msg3)_
((d31 ^ tcs13) _ (d34 ^ tcs43))) 0011 139.25 FALSE 55.91 1.12

} (¬(try1)_ j (ringt1 _ busyt1)) 0011 541.17 FALSE 220.24 1.16

} (¬(tt1 ^ d13) _ td3) 1111 10.43 TRUE 3.01 1.26

} (¬(tcs13)_
} (¬(d31 ^ (ringt3 _ tt3)))) 0001 94.46 FALSE 91.92 1.00

} (¬(tcs42)_
} (¬(d24 ^ (ringt2 _ tt2)))) 0001 11.10 FALSE 7.53 1.05

Future work

I Relationships with existing notions of robustness in control theory;
I rLTL synthesis problem.

References

1. Evrostos: The rLTL Verifier
Tzanis Anevlavis, Daniel Neider, Matthew Philippe and Paulo Tabuada
Submitted to the 22nd ACM International Conference on Hybrid Systems:
Computation and Control (HSCC 2019).

2. Verifying rLTL formulas: now faster than ever before!
Tzanis Anevlavis, Matthew Philippe, Daniel Neider and Paulo Tabuada
To appear in the 57th IEEE Conference on Decision and Control (CDC 2018).

3. Robust Linear Temporal Logic
Paulo Tabuada and Daniel Neider
25th EACSL Annual Conference on Computer Science Logic (CSL 2016).

4. Feature integration using a feature construct
Malte Plath and Mark Ryan
Science of Computer Programming 41, 1 (2001), 53 - 84.

http://www.cyphylab.ee.ucla.edu NSF Project Award Number: 1645824, A science of CPS robustness

