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Objective of CPS Design

Efficient implementation of multiple control
applications in a Distributed Embedded System

(DES) using
e flexibility and transparency in the DES
platform

e properties of nonlinear dynamic systems
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CPS Design Goals

* Co-design the controller and the DES

architecture to control multiple applications
with minimal DES resources.
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Substrate Components

1. Codesign using arbitration

2. Control implementation in
multicore processors
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Codesign Using Arbitration

sy — [
i k . . High-le el ﬁ)efification
Shared resources — nee tration — leads to delays

delays — used in our codesign
Task Partitioning

Task mapping and
scheduling
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A window into embedded control

T: End-to-end delay

T =ah a<l T = Bh
| ] > |< . >| =>
tl( | tht1 tl( tiss |
g >1
x[k] u[k] x[k] ulk]

e At each t;: Measure x|k]|, compute u|k]|after t
ah, . L .
° T = {,Bh - depending on the applications serviced

e Control performance directly depends on t
e Prior information about 7 is highly useful.
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Delay Estimation Tool

 Worst case end-to-end delay: Real-time Calculus

e RTC establishes a link between three areas

— Max-Plus Linear System Theory dealing with certain
class of discrete systems

— Network Calculus for establishing time bounds in
communication networks

— Real-time Scheduling
e Used for
— Feasibility analysis
— Optimal priority assignment for a general task
— Estimating end-end delay and for co-design
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Worst Case End-to-end Delay
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Possible Strategies
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Co-design Strategies

Tth
1. Nominal + Abort T uld
. . tk ;:k+1
{Compute nominalulk] if T<Ty
Abort u[k] if T> T4 ulk — 1]

u[k] is computed (nominal).

2. Drop Compensation Control

Tth

T

»
P

{ Compute nominal u[k] if T< 1y, )
k

Compute drop-based ulk] if T > 74,

ulk — 1]

|
Cr+1

ulk]

u|k] is dropped.



Co-design Strategy 1

Nominal + Abort Nominal
Compute nominalulk] if <t Tth [k]
S Tin > u
{ Abort u[k] if T> 1y T ‘
Leads to: |
1. Nominal Itk tk+1
: ulk — 1]
{x[k + 1] = Ax[k] + Byulk] + Boulk — 1] if T < 14y,
ulk] = K x[k]
2. 1 Drop T DI
{x[k + 1] = Ax[k] + (By+B)ulk — 1] if > 4 th
ulk] = ulk — 1] T |
3. iDrops Lk Ck+1
x[k + 1] = Ax[k] + (By+B)u[k —i] if T> 74 ulk — 1] ulk]
ulk] = u[k —i]
ulk] ) .
k=1 = ulk+i—1]
’ T Tr+i
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Overall switched system

Xlk+i;]= AUV X[k] (Dropped Mode)
X[k + N] — ALPA(JP) A%A%Z)A;ll X[k + ll] (Stable Mode)
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N=m+n
Control messages with nominal (i’s) and drops (j’s)
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Stability with at most m, drops
X[k+N] =APASP ... A2 AL A AUV X [K]

Theorem 1:

Over every interval N, there exists ny such that if
there are at most N — ny drops, then the system is

stable. < —Norm-Based . |
e LMI-based analysis : 0.1 M
— Multiple Lyapunov Functions(MLF) 03005_ / -
e Stable mode o
 Dropped mode o 0 5 ) 5
— Benefits Packet Dropouts, m,
e Less conservative than norm-based approach my = N —ng

e Drops can be non-consecutive
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Overall Co-Design

v
Co-Design
Ten, | ECU| speed
Communication speed
(e.g CAN bus)
v
Control Platform
CPS System
No

QoC: Desired Quality of Control

RU: Desired Resource Utilization | Yes

Deploy

M = 3C



Case Study — Lane Keeping System

Oc

Goal: Help drivers to avoid unintended lane departure

Higher priority tasks in ECU1 and ECU2 —
can preempt control task

ECU3 can place additional load on the CAN

bus

e1: position error
e,: yaw angle error

€1 €1
d |e; €1
E e, = AC e, + BC5 + Gl/)des
€ | &5
ECU1 ECU2

Fixed Priority Fixed Priority

sensor | - actuator
__q]}@ : ®___.

= H

t

m, |

CAN Bus

T,,T,: control tasks s) .. (s

m, : control message Earliest Deadline First || pcu3
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Results — Lane Keeping

|— Lateral Position (m)
---Yaw Angle (rad)
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Time, k

N=40; m,=7
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Co-design Strategy 2

{ Compute nominal u[k] if Tty
Compute drop—-based ulk] if T > 74,

Example: nominal at t,_4, i drops at &, ..., tpyi—1

x[k] = Ax[k — 1] + Byu[k — 1] + B,u[k — 2]
ulk — 1] = Ko x[k — 1] + Gyul[k — 2]

T
— th, k-1
T | I
Lk-1 Lk

"ulk — 2]

if t<ty Nominal

I Drops

x[k + 1 Alx[k — 1] + Byulk] + Boulk — 1] if t<ty 1Drop
= K; x[k — 1] + Gyu[k — 2]
x|k + i] ix[k —i] + Bjulk +i— 1] + Bjulk — 2] if <14
ulk +i— 1] Kix[k — 1] + Gyu[k — 2],
A; = f(A, By, By, i), B,; = g(A, By, By, i) [Ki, Gi] = h(A, By, By, 1)
ulk] ) :
ulk—1] | 2( ulk +i—1]
’ T Tk+i
® - |
A :
ty Tth Li+1 tg+i “th Li+i+1

Drop Compensation Control
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Stability with at most my Consecutive Drops

Theorem 2:

The system with at most m, consecutive drops is stable, if
there exists a Common Quadratic Lyapunov Function (CQLF)
for the nominal and dropped modes of the system.

e LMI-based analysis

— Common Quadratic Lyapunov Function (CQLF)
* Nominal mode (K, Gg)
* Dropped mode (K4, Gy, K, , G5, -+, K;, G;)
— Benefits
* Increased robustness and stability
* Guaranteed performance if K;, G; exist

e |f drop rate % is known, tighter design with guaranteed
decay rate
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Overall co-design

[ 4

Co-Design

-
xk—1] |t

ECU

ulk — 2] Communication speed

speed

QoC: Desired Quality of Control
RU: Desired Resource Utilization

Yes

Deploy

(e.g CAN bus)
W ¥
Control Platform
K;, Gil Max dropsl lDrop rate
CPS System
No

(Less Conservative)
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Results

Example:

Inverse Pendulum

A= [o31 _15480 % =l1000]
Sampling time: 10ms
Delay threshold: 4, = 3ms
Maximum 5 consecutive drops
DCC: Drop Compensation Control
ZOH: Regular Zero Order Hold
Drop pattern:
SFSFFSFFSSFSSFSFS...
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Co-design results (Strategy 1)
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Figure 15: ECUI processor frequency for different delay thresholds.
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(a) Low speed bus (125 kBits/s) (b) Medium speed bus (250 kBits/s) (c) High speed bus (500 kBits/s)
* Qur approach enables efficient design space exploration
e Co-design always outperforms the baseline approach
e Resource savings increase on more constrained platforms
Co-design provides a larger feasible design space A
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Further Refinements

L I | C+1 Ly Cr+1 Ly L+1
e =1 ulk—1]  u[k] ulk — 1]
Control: u[k] = Ky grx[k] ulk] = ulk — 1] ulk + 1] = ulk]

(Abort Computations of u[k])  (Skip computations of u[k + 1])

Illil- With Skip instead of Abort, better performance can be realized. 23 ﬁc
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Summary

Design of DES — an important substrate for
CPS

Co-design proposed for Distributed Embedded
Systems

Key ingredient: Arbitration

Combined use of tools from real-time systems
and control theory

Efficient resource utilization
Desired Quality of Control (ex. stability)
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