A Substrate for CPS Design*

Anuradha Annaswamy

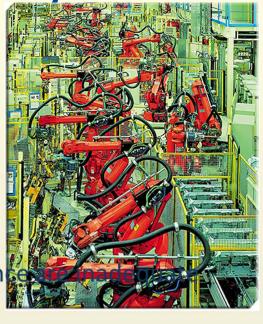
Active-adaptive Control Laboratory

Department of Mechanical Engineering

Massachusetts Institute of Technology

* Collaborators: Damoon Soundbaksh, Linh Phan, Oleg Sokolsky, and Leslie Maldonado

Distributed Embedded Systems

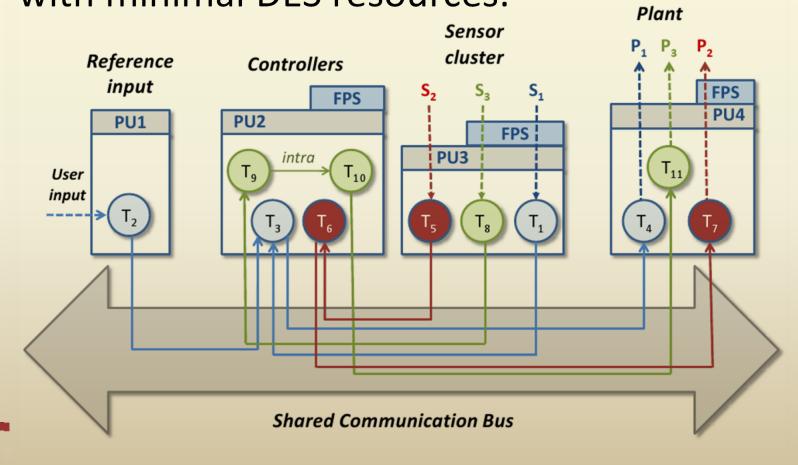

Large number of processors, buses, and gateways

Simple analysis tools of timing and control performan

thesis tools need to be advanced as well

Tools from Real-time Systems and Control Systems have to be brought together

Objective of CPS Design

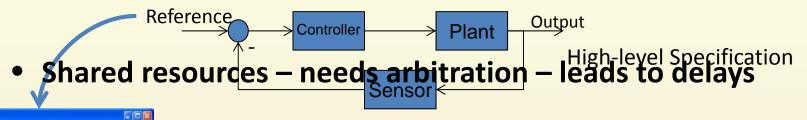

Efficient implementation of multiple control applications in a Distributed Embedded System (DES) using

- flexibility and transparency in the DES platform
- properties of nonlinear dynamic systems

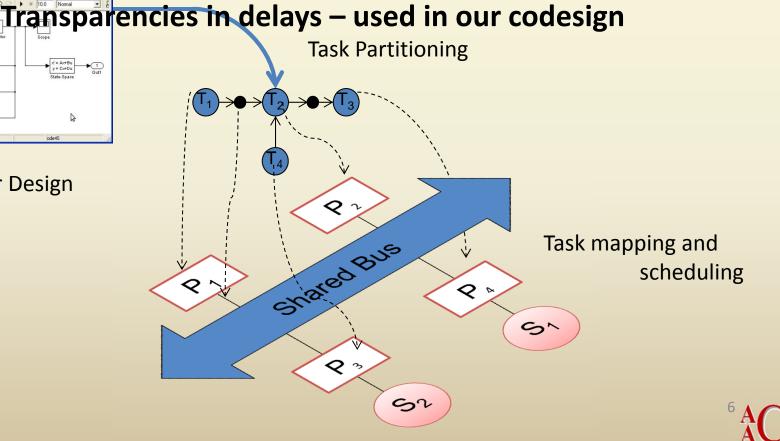
CPS Design Goals

 Co-design the controller and the DES architecture to control multiple applications with minimal DES resources.

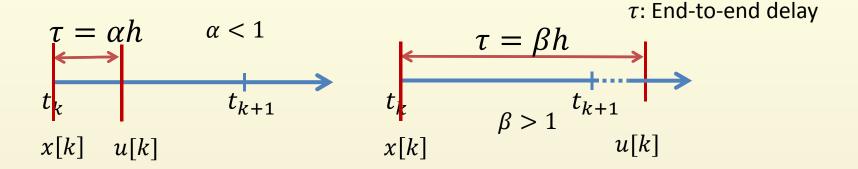
Substrate Components


1. Codesign using arbitration

This talk


2. Control implementation in multicore processors

Codesign Using Arbitration



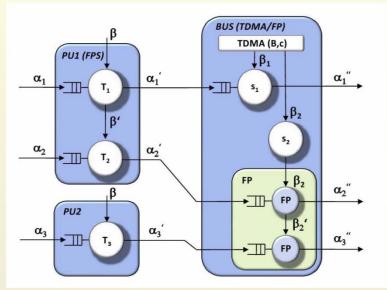
Controller Design

A window into embedded control

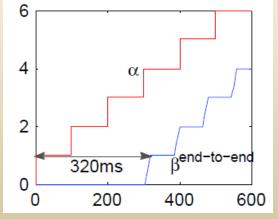
- At each t_k : Measure x[k], compute u[k] after τ
- $au = \left\{ egin{aligned} \alpha h, \\ \beta h, \end{array}
 ight.$ depending on the applications serviced
- Control performance directly depends on au
- Prior information about τ is highly useful.

Delay Estimation Tool

- Worst case end-to-end delay: Real-time Calculus
- RTC establishes a link between three areas
 - Max-Plus Linear System Theory dealing with certain class of discrete systems
 - Network Calculus for establishing time bounds in communication networks
 - Real-time Scheduling
- Used for
 - Feasibility analysis
 - Optimal priority assignment for a general task
 - Estimating end-end delay and for co-design



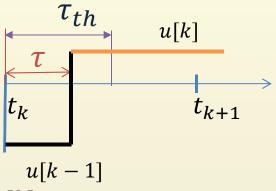
Worst Case End-to-end Delay


Real-time Calculus

- Consider message arrival curves α , service curves β , and any interval length Δ .
- The maximum delay d
 that is experienced can
 be computed as:

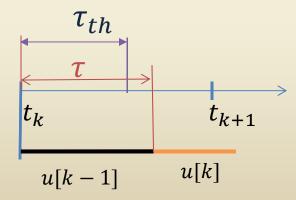
 $d = \sup\{\inf\{\tau \ge 0 \mid \alpha^u(\Delta) \le \beta^l(s+\tau) \mid s \ge 0\}$

System with hierarchical arbitration policy


Possible Strategies

Co-design Strategies

1. Nominal + Abort


(Compute nominal u[k] if
$$au \leq au_{th}$$

Abort u[k] if $au > au_{th}$

u[k] is computed (nominal).

2. Drop Compensation Control

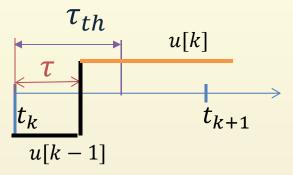
Compute nominal u[k] if
$$au \leq au_{th}$$
 Compute drop-based u[k] if $au > au_{th}$

u[k] is dropped.

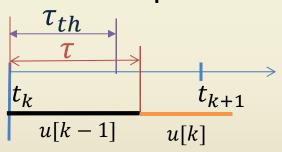
Co-design Strategy 1

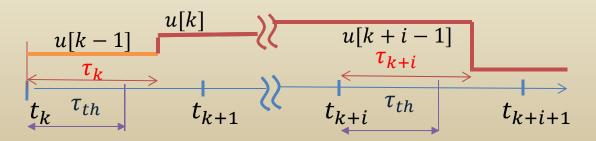
Nominal + Abort

Compute nominal u[k] if $au \leq au_{th}$ Abort u[k] if $au > au_{th}$


Leads to:

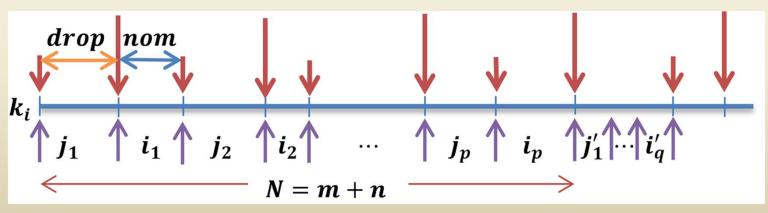
1. Nominal


$$\begin{cases} x[k+1] = Ax[k] + B_1u[k] + B_2u[k-1] & \text{if } \tau \leq \tau_{th} \\ u[k] = K x[k] \end{cases}$$


- 2. 1 Drop $\begin{cases} x[k+1] = Ax[k] + (B_1 + B_2)u[k-1] & \text{if } \tau > \tau_{th} \\ u[k] = u[k-1] \end{cases}$
- 3. i Drops $\begin{cases} x[k+1] = Ax[k] + (B_1 + B_2)u[k-i] & \text{if } \tau > \tau_{th} \\ u[k] = u[k-i] \end{cases}$

Nominal

Drop

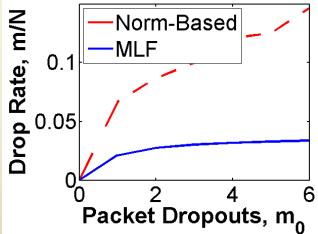


Overall switched system

$$\begin{cases} X[k+i_{1}] = & A_{m}^{(j_{1})}X[k] & \text{(Dropped Mode)} \\ X[k+N] = & A_{n}^{i_{p}}A_{m}^{(j_{p})}\cdots A_{n}^{i_{2}}A_{m}^{(j_{2})}A_{n}^{i_{1}}X[k+i_{1}] & \text{(Stable Mode)} \end{cases}$$

$$A_m^{(j_1)} \coloneqq \begin{bmatrix} A^{j+1} + A^j \, B_1 K + \sum_{l=0}^{j-1} A^l \, B \, K & A^j \, B_2 K \\ I & 0 \end{bmatrix}, \qquad A_n^{i_1} \coloneqq \begin{bmatrix} A + B_1 \, K & B_2 K \\ I & 0 \end{bmatrix}^{i_1}$$

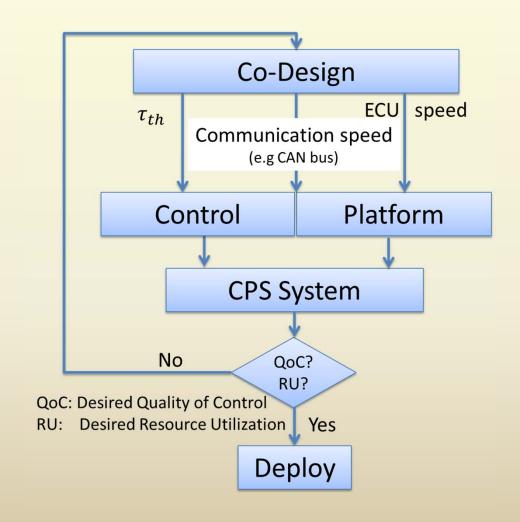
Control messages with nominal (i's) and drops (j's)


Stability with at most m_0 drops

$$X[k+N] = A_n^{i_p} A_m^{(j_p)} \cdots A_n^{i_2} A_m^{(j_2)} A_n^{i_1} A_m^{(j_1)} X[k]$$

Theorem 1:

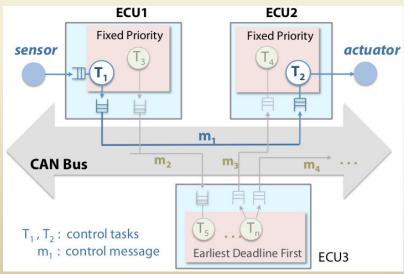
Over every interval N, there exists n_0 such that if there are at most $N-n_0$ drops, then the system is stable.


- LMI-based analysis
 - Multiple Lyapunov Functions(MLF)
 - Stable mode
 - Dropped mode
 - Benefits
 - Less conservative than norm-based approach
 - Drops can be non-consecutive

 $m_0 = N - n_0$

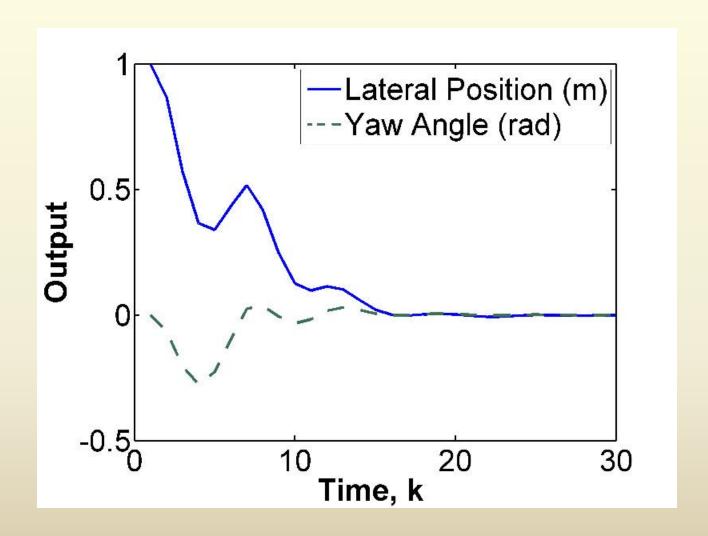
Overall Co-Design

Case Study – Lane Keeping System

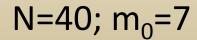

Goal: Help drivers to avoid unintended lane departure

- Higher priority tasks in ECU1 and ECU2 can preempt control task
- ECU3 can place additional load on the CAN bus

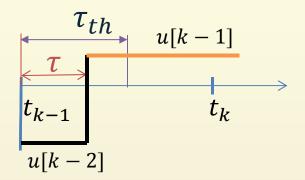
 e_1 : position error


 e_2 : yaw angle error

$$\frac{d}{dt} \begin{bmatrix} e_1 \\ \dot{e_1} \\ e_2 \\ \dot{e_2} \end{bmatrix} = A_c \begin{bmatrix} e_1 \\ \dot{e_1} \\ e_2 \\ \dot{e_2} \end{bmatrix} + B_c \delta + G \psi_{des}$$



Results – Lane Keeping

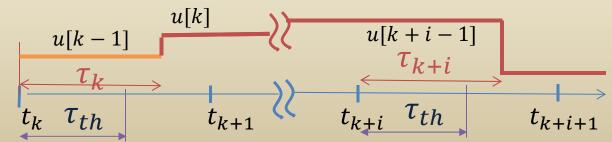


Co-design Strategy 2

(Compute nominal u[k] if
$$au \leq au_{th}$$
 (Compute drop-based u[k] if $au > au_{th}$

Example: nominal at t_{k-1} , i drops at t_k , ..., t_{k+i-1}

$$\begin{cases} x[k] = Ax[k-1] + B_1u[k-1] + B_2u[k-2] \\ u[k-1] = K_0 x[k-1] + G_0u[k-2] \end{cases}$$


if
$$au \leq au_{th}$$
 Nominal

$$\begin{cases} x[k+1] = A_1 x[k-1] + B_1 u[k] + B_2 u[k-1] \\ u[k] = K_1 x[k-1] + G_1 u[k-2] \end{cases}$$

if
$$\tau \leq \tau_{th}$$
 1 Drop

$$\begin{cases} x[k+i] = A_i x[k-i] + B_1 u[k+i-1] + B_{2,i} u[k-2] & \text{if} \quad \tau \leq \tau_{th} \quad i \; Drops \\ u[k+i-1] = K_i x[k-1] + G_i u[k-2], \end{cases}$$

$$A_i = f(A, B_1, B_2, i),$$
 $B_{2,i} = g(A, B_1, B_2, i)$ $[K_i, G_i] = h(A, B_1, B_2, i)$

Stability with at most m_0 Consecutive Drops

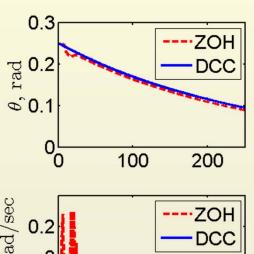
Theorem 2:

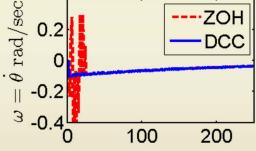
The system with at most m_0 consecutive drops is stable, if there exists a Common Quadratic Lyapunov Function (CQLF) for the nominal and dropped modes of the system.

- LMI-based analysis
 - Common Quadratic Lyapunov Function (CQLF)
 - Nominal mode (K_0, G_0)
 - Dropped mode $(K_1, G_1, K_2, G_2, \dots, K_i, G_i)$
 - Benefits
 - Increased robustness and stability
 - Guaranteed performance if K_i , G_i exist
- If drop rate $\frac{m_0}{N}$ is known, tighter design with guaranteed decay rate

Overall co-design

Results

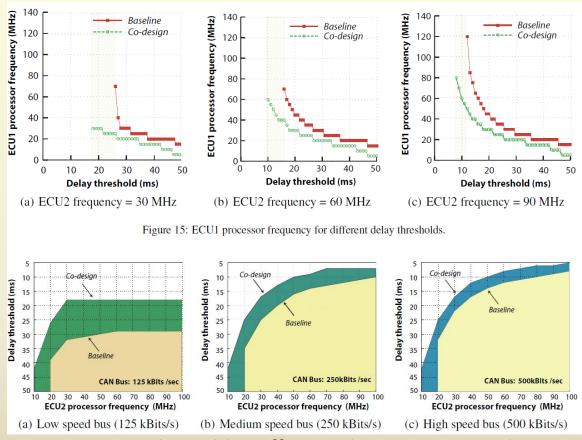

Example:


Inverse Pendulum

•
$$A_c = \begin{bmatrix} 0 & 1 \\ 6.31 & -15.48 \end{bmatrix}$$
, $B_c = \begin{bmatrix} 0 \\ 1000 \end{bmatrix}$

- Sampling time: 10ms
- Delay threshold: $\tau_{th} = 3$ ms
- Maximum 5 consecutive drops
- DCC: Drop Compensation Control
- ZOH: Regular Zero Order Hold
- Drop pattern:

SFSFFSFFSSFSSFS...



Co-design results (Strategy 1)

- Our approach enables efficient design space exploration
- Co-design always outperforms the baseline approach
- Resource savings increase on more constrained platforms
- Co-design provides a larger feasible design space

Further Refinements

Nominal	Abort	Skip
t_k t_{k+1}	t_k t_{k+1}	t_k t_{k+1}
$t_{k} \qquad t_{k+1}$ $u[k-1]$	t_k t_{k+1} $u[k-1]$	t_k t_{k+1} $u[k-1]$
$ \begin{array}{c c} u[k] \\ \hline t_k \\ u[k-1] \end{array} $	$t_k \qquad t_{k+1}$ $u[k-1] \qquad u[k]$	$\begin{array}{c c} u[k] \\ \hline t_k & t_{k+1} \\ \hline u[k-1] & \end{array}$
Control: $u[k] = K_{LQR}x[k]$	u[k] = u[k-1] (Abort Computations of $u[k]$)	u[k+1] = u[k] (Skip computations of $u[k+1]$)

Summary

- Design of DES an important substrate for CPS
- Co-design proposed for Distributed Embedded Systems
- Key ingredient: Arbitration
- Combined use of tools from real-time systems and control theory
- Efficient resource utilization
- Desired Quality of Control (ex. stability)

Selected Publications

- 1. Annaswamy A.M., Soudbakhsh D., Schneider R., Goswami D., Chakraborty S., "Arbitrated Network Control Systems: A co-design of control and platform for cyber-physical systems," Control of Cyber-Physical Systems, Lecture Notes in Control and Information Sciences, Vol. 449, Ed: D.C. Tarraf, Springer Verlag, 2013.
- 2. Soudbakhsh D., Annaswamy A., "Parallelized model predictive control," American Control Conference, Washington, DC, 2013.
- 3. Soudbakhsh D., Phan L.X, Sokolsky O., Lee I., and Annaswamy A., "Co-design of control and platform with dropped signals," The 4th ACM/IEEE International Conference on Cyber-Physical Systems [ICCPS'13], Philadelphia, PA, 2013.
- 4. Masrur A., Goswami D., Chakraborty S., Chen J., Annaswamy A., Banerjee A., "Timing Analysis of Cyber-Physical Applications for Hybrid Communication Protocols", Design, Automation, and Test in Europe (DATE2012), Dresden, Germany, March 2012
- 5. Voit H., Annaswamy A., Schneider R., Goswami D., Chakraborty S., "Adaptive Switching Controllers for Systems with Hybrid Communication Protocols", American Control Conference (ACC 2012), June 2012.
- 6. P. Kumar, D. Goswami, S. Chakraborty, A. Annaswamy, K. Lampka, and L.Thiele, "A hybrid approach to cyber-physical systems verification", in 49th Design Automation Conference, 2012.
- 7. Annaswamy A., Chakraborty S., Soudbakhsh D., Goswami D., "The Arbitrated Networked Control Systems Approach to Designing Cyber-Physical Systems", NecSys 2012.
- 8. H. Voit, A. Annaswamy, R. Schneider, D. Goswami, S. Chakraborty, "Adaptive Switching Controllers for Tracking with Hybrid Communication Protocols"., Proceedings of the Conference on Decision and Control, Maui, HI, USA, 2012.

