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[ Datasets — for both DL and classical ML experiments }
Data collection lasted one and half years ¥ AMD malware dataset (2010 —2016): 24,553
Labeled 1,456,350 apps released between 2016 and 2018 NH diﬁiis “ Newer benign (After 2016): 370,701

Labeled 339,853 apps between 2018 and 2019

~ Newer malicious (After 2016): 24,868

* Uses specific apk features to classify benign and malicious apps

 The ML system used 1n our experiment 1s based on 471 features
extracted from permissions, intent actions, discriminative APIs,
obfuscation signatures, and native code signatures
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Main Challenges

* Feature engineering has to keep up with evolving app
trends

* Feature extractor has to keep up with changing app
format

*  We built our datasets with real-life malicious:benign ratio
(less than 0.05)

* We use the area under the precision-recall curve (auPRC) to
evaluate the classifier’s performance for real-world
application

* Experimented with Bernoulli Naive Bayes, k-nearest
neighbors, support vector machines, and random forest
classifiers

* Traditional ML model meets challenges on highly

unbalanced dataset
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[Overview of DL Vetting System}
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Feeds raw apks into preprocessing layer; then generates API
call sequence

Treats each API call as a word; 1t uses the first 4000 API
calls for each app

Applies different embedding techniques such as Word2vec,
GloVe, ELMo and BERT

Each app, represented as a vector, 1s fed into an LSTM
neural network layer with 4000 neurons

[Benefits & Challenges }

* Automated feature capability of DL

[DL vs. Traditional ML Results }

* Both traditional ML and DL models 09 -
have good performance on balanced
data

* Both models’ performance decreases
on unbalanced data o ML Prediction

* DL model has better performance on 0 | ~*" DL Prediction 132
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could benefit mobile app vetting
systems

* Efficiently applying DL for large-
T scale malware detection comes with
significant challenges
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