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Abstract

We derive a new formula for the sensitivity of electrome-
chanical oscillation damping with respect to generator re-
dispatch. The formula could lead to some combination of
observations, computations and heuristics to more effec-
tively damp interarea oscillations.

1 Introduction

Large-scale power systems have multiple low frequency and
lightly damped electromechanical modes of oscillation. If
the damping of these modes becomes too small or positive,
then the resulting oscillations can cause equipment dam-
age, malfunction or blackouts. The oscillations can appear
for large or unusual power transfers, and may become more
frequent as power systems experience greater variability of
loading conditions. Practical limits for power system se-
curity often require sufficient damping of oscillatory modes
[5, 27] and power transfers on tie lines are sometimes lim-
ited by oscillations [5, 16, 17, 4].

There are several approaches to suppressing low-frequency
oscillations, including limiting power transfers, installing
closed loop controls, and taking control actions such as re-
dispatching generation. In this paper we do analysis to
underpin the suppression of oscillations via redispatch of
generation. Changes in generator dispatch change the
oscillation damping by exploiting the nonlinearity of the
power system: changing the dispatch changes the operating
equilibrium and hence the linearization of the power sys-
tem about that equilibrium that determines the oscillatory
modes and their damping. The use of generator dispatch
to damp oscillations has been demonstrated and there are
several previous approaches:

1. There are heuristics in terms of the mode shapes for
the redispatch for some simpler grid structures [11, 12].

2. There are exact computations of the sensitivity of the
damping from a dynamic power grid model [8, 9, 22,
32]. The formulas from these computations require
Hessians and left eigenvectors of the mode shapes, or
derivatives of eigenvectors.

3. The effective generator redispatches can be determined
by repetitive computation of eigenvalues of a dynamic

power grid model to give numerical sensitivities [4, 14,
15, 7].

The requirement in approaches 2 and 3 of a large scale
power system dynamic model poses some difficulties. It is
challenging to obtain validated models of generator dynam-
ics over a wide area and particularly difficult to determine
dynamic load models. Moreover, in approach 2, it does not
seem feasible to estimate the left eigenvectors of the mode
shapes or derivatives of eigenvectors from measurements.

The new formula for modal sensitivity we derive largely de-
pends on power system quantities that can, at least in prin-
ciple, be observed from measurements. In particular, the
formula shows that the first order effect of a generator re-
dispatch largely depends on the mode shape and the power
flow. (The assumed equivalent generator dynamics only
appear as a factor common to all redispatches.) The mode
shape (right eigenvector of the oscillatory mode of inter-
est) is to some considerable extent obtainable from power
system measurements [13, 29, 3, 10]. As a general goal,
we would like to move towards approaches that take more
advantage of synchrophasor measurements, and are less de-
pendent on detailed wide area power system dynamic mod-
els that are hard to obtain. While we have not yet proved
that the formula can be the basis for doing this, the formula
does open up this promising possibility.

Another possible approach would be to use the new formula
to gain insights into oscillation damping by generator redis-
patch that can be expressed and applied as heuristics. In
fact our analytic work is inspired by the heuristics by Fisher
and Erlich in [11, 12], and a general goal is to confirm, re-
fine and extend their heuristics by supplying an analytic
basis for the heuristics.

A key barrier to better understanding and computing or
deriving heuristics for generator redispatch to damp oscil-
lations has been the difficulty of the analysis. In this paper
we are able to combine several new and old methods of
analysis to derive a new formula for the sensitivity of the
oscillation damping and frequency with respect to genera-
tor redispatch. Most of the paper is devoted to deriving
the new formula, but we also give some special cases and
simple examples to begin the process of understanding the
formula and how it might be applied. The paper results
will also appear in Spanish as part of PhD thesis [21].
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2 Notation

We use the following notation and definitions. All quanti-
ties are in per unit unless otherwise stated.

n number of buses
m number of generator buses;

buses 1,2, ... ,m are the generator buses
` number of transmission lines

δi voltage angle of bus i
δ vector of voltage angles (δ1, δ2, ..., δn)T

Vi voltage magnitude at bus i
V vector of voltage magnitudes (Vm+1, Vm+2, ..., Vn)T

at load buses
z state vector (δ, V )T

V ln
i lnVi; logarithm of voltage magnitude at bus i

Pi net real power injection at bus i
Qi net reactive power injection at bus i

ω0 nominal frequency in rad/s
hi inertia at bus i in seconds
mi 2hi/ω0

M diagonal matrix diag{m1,m2, ...,m2n−m}
di damping coefficient at bus i in seconds
D diagonal matrix diag{d1, d2, ..., d2n−m}
bij imaginary part of ij element of bus admittance

matrix (for i 6= j, bij is the absolute value of the
susceptance of the line joining bus i and bus j;
bii is the sum of the susceptances incident on bus i.)

bk absolute value of the susceptance of line k
pk real power flow in line k defined in (44)
qk part of reactive power flows in line k defined in (43)

R scalar potential energy function defined in (3)
L a weighted Laplacian matrix; Hessian of R
L† Matrix pseudo-inverse of L
Q Mλ2 +Dλ+ L; a quadratic matrix function of λ
x eigenvector of Q

The bus-line incidence matrix A is defined by

Aik =

 1 if bus i is the sending end of line k,
−1 if bus i is the receiving end of line k,

0 otherwise.

The matrix of absolute values of the entries of A is written
as |A|. That is,

|Aik| =
{

1 if bus i is the sending or receiving end of line k,
0 otherwise.

The angle across line k is defined as

θk =

n∑
r=1

Arkδr =

{
δi − δj if bus i is sending end of line k,
δj − δi if bus i is receiving end of line k,

and we write θ = (θ1, θ2, ...., θ`)
T for the vector of angles

across all the lines.

The new voltage coordinate for line k that connects bus i
to bus j is defined by

νk =

n∑
r=1

|Ark| lnVr = ln (ViVj),

and we write ν = (ν1, ν2, ...., ν`)
T for the vector of voltage

coordinates for all the lines.

z′ state vector (θ, ν)T (“dashed” coordinates)
h z′ = h(z); transforms undashed to dashed coordinates
H Jacobian of coordinate change h
x′ eigenvector of Q in dashed coordinates z′

3 Power System Model

We model the generators with simple swing dynamic equa-
tions and also consider the real and reactive power balance
algebraic equations of the network. The transmission lines
are lossless.

The real power balance equations for all buses are

miδ̈i + diδ̇i +
∑
j∼i

bijViVj sin(δi − δj) = Pi,

i = 1, 2, . . . , n. (1)

The notation j ∼ i means that the summation is over all
buses j connected to bus i, excluding i.

The reactive power balance equations for all load buses are

−
∑
j∼i

bijVj cos(δi − δj) =
Qi
Vi

+ biiVi,

i = m+ 1, . . . , n. (2)

Note that the reactive power balance equations (2) have
been divided by the bus i voltage magnitude Vi [6].

The model (1) and (2) is differential-algebraic equations
written in terms of state variables z = (δ, V ) of the bus
voltage angles δ and the voltage magnitudes of the load
buses V . (The generator voltage magnitudes V1, V2, ..., Vm
are assumed to be constant.) The coupling of the machine
angle dynamics of (1) into the voltages of (2) is emphasized
in [31].

There are two types of buses:

1. Generators. Generator i is assumed to have constant
voltage magnitude Vi and the overall effect of its dy-
namics described by the swing equation.

2. Loads. Load i can be modeled as a constant power
load with real power Pi < 0 and reactive power Qi.
Moreover, mi = di = 0. However, if desired, it is
straightforward to model the frequency dependence of
real power with di 6= 0, and to allow the reactive power
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Qi to be a function of Vi. Connecting buses are a
special case of load buses with mi = 0, di = 0, Pi = 0,
and Qi = 0.

Now we rewrite (1) and (2) in terms of the partial deriva-
tives of the scalar potential energy function

R = −
∑
i,j

i 6=j,i∼j

bijViVj cos(δi − δj)

−
n∑
i=1

(Piδi + 1
2biiV

2
i +Qi lnVi). (3)

The first summation in (3) is over all the lines. R is well-
known from energy function approaches to power systems
[2, 1, 23, 30, 25, 6]. Then (1) and (2) can be rewritten as

miδ̈i + diδ̇i +
∂R

∂δi
= 0, i = 1, 2, . . . , n, (4)

∂R

∂Vi
= 0, i = m+ 1, . . . , n. (5)

The model is differential-algebraic equations with parame-
ters Pi representing the generator power injections that we
seek to change to best damp the oscillations. Note that the
parameters Pi do not appear explicitly in the Jacobian of
(4-5); the mechanism of the damping is that changing Pi
changes the operating point at which the Jacobian is evalu-
ated and, since the power system is nonlinear, changes the
eigenvalues and the damping. The generator redispatch
damping is an open-loop control exploiting nonlinearity.

4 Linear Stability Analysis

The dynamics of the system is described by a set of nonlin-
ear differential-algebraic equations, and we will apply linear
stability analysis to compute the electromechanical nodes
of the system. The state vector z = (δ, V ). Linearizing
(4-5) and evaluating at the operating equilibrium z∗, we
have

mi∆̈δi + di∆̇δi +

2n−m∑
j=1

Lij∆zj = 0, i = 1, 2, . . . , n, (6)

2n−m∑
j=1

Lij∆zj = 0, i = m+ 1, . . . , n. (7)

The linearized deviations from the equilibrium are written
as ∆z = (∆δ,∆V ). The weighted Laplacian matrix L is
defined as the Hessian of R evaluated at the equilibrium:

L =
∂2R

∂z2

∣∣∣
z∗

=

 ∂2R

∂δ2
∂2R

∂δ ∂V
∂2R

∂V ∂δ

∂2R

∂V 2


∣∣∣∣∣∣∣
z∗

(8)

L is a symmetric (2n − m) × (2n − m) matrix. We can
use the matrices M = diag{m1,m2, ...,m2n−m} and D =

diag{d1, d2, ..., d2n−m} to rewrite (6) and (7) in matrix form
as

M∆̈z +D∆̇z + L∆z = 0. (9)

Now, following [20], we define the quadratic matrix function

Q(λ) = Mλ2 +Dλ+ L. (10)

Q is a symmetric complex matrix. We consider the
quadratic eigenvalue problem of finding (λ, x) ∈ C×C2n−m

such that

Q(λ)x = 0. (11)

x is the right eigenvector associated to the eigenvalue λ.

We assume throughout the paper that the Jacobian evalu-
ated at the operating equilibrium z∗ has no zero eigenvalues
except for those associated with the uniform increase of all
the angles. Moreover, we assume throughout the paper
that the eigenvalue λ is nonresonant (algebraic multiplic-
ity one). These generic assumptions ensure that λ and x
(suitably normalized) are locally smooth functions of sys-
tem parameters. Although the calculations apply to any
nonresonant eigenvalue, it is convenient to consider in the
sequel a particular complex eigenvalue λ corresponding to
an interarea oscillation. Then x is a complex eigenvector.

Since M , D, L, and Q are symmetric, the left eigenvector
is the row vector xT ; i.e., xTQ = 0.

We have ∑
i,j

Qijxixj = xTQx = 0. (12)

It might seem more natural at this point to write x̄TQx = 0
instead of (12), but nevertheless it is important to proceed
with (12).

Using a state vector (ωg, δ), where ωg is the vector of gen-
erator speeds, the second order parts of (6) can be rewrit-
ten as first order differential-algebraic equations, and an
extended Jacobian J obtained. The appendix shows that
the finite generalized eigenvalues of J are the same as the
eigenvalues of the quadratic eigenvalue problem and that
the eigenvectors also correspond. In particular, eigenvec-
tor x of the quadratic eigenvalue problem with eigenvalue
λ corresponds exactly to a right generalized eigenvector
(λxg, x) of J , where xg is the vector of components of x
corresponding to generator angles. Thus there is a direct
relationship between the eigenvector x and eigenvalue λ of
(11) and the conventional right eigenvector eigenstructure
of the differential-algebraic equations.

5 Eigenvalue Sensitivity

In this section we compute the sensitivity of the elec-
tromechanical modes of the system starting from (12). We
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suppose that M and D are constant matrices.

Computing the differential of (12) and using (11),

0 = d(xTQx) = (dxT )Qx+ xT (dQ)x+ xTQdx

= xT(dQ)x = xT
(
d(λ2M + λD + L)

)
x

= 2λxTMxdλ+ xTDxdλ+ xT (dL)x. (13)

Then solving for dλ gives the complex equation

dλ = − xT dLx

2λxTMx+ xTDx
. (14)

The linearization (14) captures the first order sensitivity of
a mode. Several conclusions may be drawn from (14). The
sensitivity of a mode depends on its associated eigenvector
x, but not on changes of the eigenvector. This means that
to predict to first order the changes of a mode one does
not need to take into account the variation of its mode
shape. Moreover, the change in a mode is proportional
to the changes in the network dL caused by the generator
redispatch. It is convenient to define the complex number

α = 2λxTMx+ xTDx. (15)

Then (14) becomes

dλ = −x
T dLx

α
. (16)

Given a particular mode of interest λ, the generator dy-
namical parameters M and D and the eigenvalue λ only
appear in (16) as the complex factor α in the denominator
that is the same for all redispatches.

As (16) depends on the differential dL of the Laplacian, the
next subsections will, after introducing new coordinates,
focus in calculating dL.

5.1 New Coordinates Related to the Transmission Lines

We know that the change in the eigenvalue is proportional
to the change dL of the Laplacian of the system. L carries
all the information of the network; i.e., L describes aspects
of the power flow through every transmission line of the net-
work, so this suggests computing L with coordinates that
are related to the transmission lines of the network, instead
of coordinates that are related to the buses. For this reason
we define new dashed coordinates z′ = (θ, ν). z′ is a vector
of size 2`, where ` is the number of transmission lines in
the network. For line k joining buses i and j, the variables
θk and νk are defined by

θk =

n∑
r=1

Arkδr = δi − δj , (17)

νk =

n∑
r=1

|Ark| lnVr = ln (ViVj). (18)

Equations (17) and (18) are a nonlinear change of coordi-
nates

(θ, ν) = h(δ, V ), or (19)

z′ = h(z). (20)

The Jacobian of the coordinate change h is a 2`× (2n−m)
matrix written as

H =
∂h

∂z
, (21)

with the entries

Hki =

{
Aik, i = 1, . . . , n
0, i = m+ 1, . . . , n

}
, k = 1, . . . , `, (22)

Hki =

 0, i = 1, . . . , n
|Aik|
Vi

, i = m+ 1, . . . , n

 , k = `+ 1, . . . , 2`.

(23)

Note that (23) depends on the magnitude of the load volt-
age Vi. The eigenvectors x = (xδ, xV ) transform to eigen-
vectors x′ = (x′θ, x

′
ν) according to

x′ = Hx. (24)

That is, for k = 1, . . . , `,

x′θk =

n∑
r=1

Arkxδr

=

{
x
δi
− x

δj
if bus i is sending end of line k,

x
δj
− x

δi
if bus i is receiving end of line k.

(25)

x′νk =

n∑
r=m+1

|Ark|
Vr

x
Vr

=


xVi
Vi

+
x
Vj

Vj
if line k joins load bus i to load bus j,

xVi
Vi

if line k joins load bus i to generator bus j.

(26)

(In (26), we neglect the case that 2 generator buses are
joined by a line. This case can be excluded by combining
together models for generators behind a common step-up
transformer, and modeling the transformer as a bus.)

In most cases, the new coordinates are overdetermined or
redundant; that is, the system has more line coordinates
than the number of independent voltage angles and magni-
tudes.1 This does not affect the derivation of the formula

1Consider a tree network composed by n buses. The tree network
has n − 1 lines, so the number of line angle coordinates is equal to
the number of independent bus voltage angles. If the network has
just one generator, the number of line voltage coordinates is equal to
the number of voltage magnitude variables. However, if the network
has more than one generator, the number of line voltage coordinates
is larger than the number of bus voltage magnitudes. In meshed
networks the new line coordinates are always overdetermined because
the number of lines is larger that the number of independent voltage
angles and magnitudes.
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in this paper, which applies generally, but the dependen-
cies between the line coordinates should be kept in mind in
future work applying the formula.2

The Laplacian matrix in the new coordinates is

L′ij =
∂2R

∂z′i∂z
′
j

, (27)

L′ is a 2` × 2` matrix. The partial derivatives transform
according to

∂

∂zi
=

2∑̀
k=1

Hik
∂

∂z′k
. (28)

Then L and L′ are related by

Lij =
∂2R

∂zi∂zj

=

2∑̀
h,k=1

HihHkj
∂2R

∂z′h∂z
′
k

=

2∑̀
h,k=1

HihHkjL
′
hk, (29)

or

L = HTL′H. (30)

Then

dL = d(HTL′H) = HT (dL′)H + 2HTL′dH. (31)

5.2 Computing dL

In this section the goal is to compute the right hand side
of expression (31). To do it we have to express R from (3)
in terms of z′, but note that R is naturally composed by
one part related to the transmission lines and another part
that refers to the buses of the system. As z′ is related to
the transmission lines, this suggests to express just the first
part of R in terms of z′ and to keep the second part in
terms of the bus coordinates; i.e.,

R = Rline +Rbus, (32)

where

Rline = −
∑
i,j

i6=j,i∼j

bijViVj cos(δi − δj), (33)

Rbus = −
n∑
i

(Piδi +
1

2
biiV

2
i +Qi lnVi). (34)

Correspondingly,

L = Lline + Lbus, (35)

2We note the approach in [2] of using the line angle coordinates
corresponding to a spanning tree of lines.

where

Lline =
∂2Rline

∂z2
, (36)

Lbus =
∂2Rbus

∂z2
. (37)

Note that Rbus contributes just in the diagonal terms of L
that are related with the algebraic variables Vi. Computing
the differential of L from (35),

dL = dLline + dLbus. (38)

In subsection 5.3 we compute dLline in the new coordinates
related to the transmission lines and compute dLbus in the
bus coordinates.

5.3 Computing dLline

Similarly to (30),

Lline = HTL′lineH. (39)

Then

dLline = d(HTL′lineH)

= 2HTL′linedH +HT (dL′line)H. (40)

We first compute L′line. Rline can be nicely written in the
line coordinates as

R′line = −
∑̀
k=1

bke
νk cos θk. (41)

Of course, since Rline is a scalar, R′line = Rline. Then

L′line =
∂2R′line
∂z′2

=

∂2R′line
∂θ2

∂2R′line
∂θ∂ν

∂2R′line
∂ν∂θ

∂2R′line
∂ν2

 . (42)

It is convenient to define for line k the quantities

pk = bke
νk sin θk, (43)

qk = −bkeνk cos θk. (44)

pk is the real power flow on line k, and qk is part of the
expression for the reactive power flows on line k. Then

∂2R′line
∂θ2k

= bke
νk cos θk = −q

k
, (45)

∂2R′line
∂θk∂νk

= bke
νk sin θk = p

k
, (46)

∂2R′line
∂ν2k

= −bkeνk cos θk = q
k
. (47)
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And the block submatrices of L′line in (42) become the di-
agonal matrices

∂2R′line
∂θ2

= −diag{q1, q2, . . . , q`}, (48)

∂2R′line
∂θ∂ν

= diag{p1, p2, . . . , p`}, (49)

∂2R′line
∂ν2

= diag{q1, q2, . . . , q`}. (50)

The corresponding block submatrices of dL′line are then

d

(
∂2R′line
∂θ2

)
= −diag{dq1, dq2, . . . , dq`}, (51)

d

(
∂2R′line
∂θ∂ν

)
= diag{dp1, dp2, . . . , dp`}, (52)

d

(
∂2R′line
∂ν2

)
= diag{dq1, dq2, . . . , dq`}. (53)

Now we compute the matrix dH. From (22) and (23) we
have that the entries different from zero of dH are the en-
tries related to (23); i.e.,

dHki = −dVi
V 2
i

|Aik|, i = m+ 1, . . . , n, k = `+ 1, . . . , 2`.

(54)

Defining V ln
i = lnVi, then

dV ln
i = d(lnVi) =

dVi
Vi
. (55)

With (55) in mind, (54) becomes

dHki = −dV
ln
i

Vi
|Aik|, i = m+ 1, . . . , n, k = `+ 1, . . . , 2`.

(56)

Lastly, we compute dLbus. Using (37), note that Lbus con-
tributes only in the diagonal terms of L that are related
with the algebraic variables Vi; i.e.,

(Lbus)ij =

−bii +
Qi
V 2
i

if i = j and i = m+ 1, . . . , n.

0 otherwise.

(57)

Using (55),

(dLbus)ij =

−
2Qi
V 2
i

dV ln
i if i = j and i = m+ 1, . . . , n.

0 otherwise.

(58)

5.4 Computing xT dLx

In this section we compute xT dLx. From (38) we have

xT dLx = xT (dLline)x+ xT (dLbus)x. (59)

First we calculate xT (dLline)x using (40):

xT (dLline)x = xT [HT (dL′line)H + 2HTL′linedH]x

= x′T (dL′line)x
′ + 2x′TL′line(dH)x. (60)

Then

x′T (dL′line)x
′ = (x′θ, x

′
ν)

d
(
∂2Rline

∂θ2

)
d
(
∂2Rline

∂θ∂ν

)
d
(
∂2Rline

∂θ∂ν

)
d
(
∂2Rline

∂ν2

)
(x′θ

x′ν

)
,

and using (51-53),

=
∑̀
k=1

[(x′νk)2 − (x′θk)2]dq
k

+ 2
∑̀
k=1

x′θkx
′
νk
dp

k
. (61)

Now we calculate 2x′TL′line(dH)x.

Using (56), the first k entries of (dH)x are zero, and the
last k entries of (dH)x are

(dH)x =

(
0
cν

)
, (62)

where, writing xln
Vi

=
x
Vi

Vi
,

cνk = −
n∑

i=m+1

xln
Vi
dV ln

i |Aik|, k = `+ 1, . . . , 2`. (63)

Now

2x′T (L′line)(dH)x = 2(x′θ, x
′
ν)

(
∂2Rline

∂θ2
∂2Rline

∂θ∂ν

∂2Rline

∂θ∂ν
∂2Rline

∂ν2

)(
0
cν

)
,

and using (45-47),

= 2
∑̀
k=1

(
x′θkpk + x′νkqk

)
cνk

= −
n∑

i=m+1

{
2
∑̀
k=1

|Aik|(x′θkpk + x′νkqk)xln
Vi

}
dV ln

i .

(64)

From (61) and (64),

xT (dLline)x =
∑̀
k=1

[(x′νk)2 − (x′θk)2]dq
k

+ 2
∑̀
k=1

x′θkx
′
νk
dp

k

−
n∑

i=m+1

{
2
∑̀
k=1

|Aik|
(
x′θkpk + x′νkqk

)
xln
Vi

}
dV ln

i .

(65)

Lastly, we compute xT (dLbus)x. From (58),

xT (dLbus)x = −
n∑

i=m+1

2(xln
Vi

)2QidV
ln
i . (66)
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From (65) and (66),

xT dLx =
∑̀
k=1

[(x′νk)2 − (x′θk)2]dq
k

+ 2
∑̀
k=1

x′θkx
′
νk
dp

k

−
n∑

i=m+1

{
2
∑̀
k=1

|Aik|
(
x′θkpk + x′νkqk

)
xln
Vi

}
dV ln

i

−
n∑

i=m+1

2(xln
Vi

)2QidV
ln
i . (67)

Expressing dpk and dqk in terms of dθk, dV ln
i and dV ln

j ,

dp
k

= −q
k
dθk + p

k
dV ln

i + p
k
dV ln

j , (68)

dq
k

= p
k
dθk + q

k
dV ln

i + q
k
dV ln

j . (69)

Substituting (68) and (69) in (67) and rearranging terms,

xT dLx =
∑̀
k=1

[(x′νk)2 − (x′θk)2](p
k
dθk + q

k
dV ln

i + q
k
dV ln

j )

+ 2
∑̀
k=1

x′θkx
′
νk

(−q
k
dθk + p

k
dV ln

i + p
k
dV ln

j )

−
n∑

i=m+1

{
2
∑̀
k=1

|Aik|
(
x′θkpk + x′νkqk

)
xln
Vi

}
dV ln

i

−
n∑

i=m+1

2(xln
Vi

)2QidV
ln
i

=
∑̀
k=1

{
[(x′νk)2 − (x′θk)2]p

k
− 2x′θkx

′
νk
q
k

}
dθk

+

n∑
i=m+1

∑̀
k=1

|Aik|
{
x′νk [x′νk − 2xln

Vi
]− (x′θk)2

}
q
k
dV ln

i

+

n∑
i=m+1

∑̀
k=1

|Aik|
{
x′νk − x

ln
Vi

}
2x′θkpkdV

ln
i

−
n∑

i=m+1

2
(
xln
Vi

)2
QidV

ln
i . (70)

Define

Cq
k

= x′νk

(
x′νk − 2xln

Vi

)
− (x′θk)2, (71)

Cp
k

= 2x′θk

(
x′νk − x

ln
Vi

)
, (72)

CQi = −2
(
xln
Vi

)2
. (73)

Note that Cp
k
6= 0 only when the kth line is connecting two

load buses. Substituting (71-73) into (70),

xT dLx =
∑̀
k=1

{
[(x′νk)2 − (x′θk)2]p

k
− 2x′θkx

′
νk
q
k

}
dθk

+

n∑
i=m+1

{∑̀
k=1

|Aik|(Cq
k
q
k

+ Cp
k
p
k
) + CQiQi

}
dV ln

i .

(74)

The expression (74) is the numerator of (16), so that the
final formula is

dλ = −x
T dLx

α

= − 1

α

{∑̀
k=1

{
[(x′νk)2 − (x′θk)2]p

k
− 2x′θkx

′
νk
q
k

}
dθk

+

n∑
i=m+1

[∑̀
k=1

|Aik|(Cq
k
q
k

+ Cp
k
p
k
) + CQiQi

]
dV ln

i

}
,

(75)

where, repeating (15) for convenience,

α = 2λxTMx+ xTDx. (76)

We make some general observations about formula (75):

• Generator redispatch results in the changes dθ and
dV ln and affects only the numerator of (75). The de-
nominator α depends on the equivalent generator pa-
rameters, the eigenvalue λ, and the eigenvector x, and
is the same for all generator redispatches. Thus, after
accounting for the common effect of the denominator
on all the generator redispatches, we can determine
the effective or ineffective generator dispatches by their
varying effects on the numerator.

• The numerator depends on the redispatch via the
changes in angles across the lines dθ and changes in
load voltage magnitudes dV ln. The coefficients of dθ
depend on the mode eigenvector x expressed in line
coordinates and the real and reactive power line flows.
The coefficients of dV ln additionally depend on the
load voltage magnitude coordinates of the mode eigen-
vector x and the reactive power load.

• To find a good generator redispatch to improve the
mode eigenvalue, we need to identify lines k that have
coefficients dθk of suitable magnitude and sign, and
then find a redispatch that suitably changes θk on those
lines. If the redispatch also affects load voltage mag-
nitudes, we need to also consider dV ln and the coeffi-
cients of dV ln.

• In (75), the change in the mode eigenvalue is given as
a complex number. In practice, for maintaining oscil-
latory stability, we are most interested in the change
in damping (the real part of dλ) or the change in the
damping ratio.
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• The sensitivity of a mode depends linearly on the ac-
tive and reactive power flow through every line of the
network at the equilibrium. In the case of load buses
the constant reactive power demand also affects lin-
early the sensitivity of the mode.

• The formula (75) is independent of the scaling of the
eigenvector x.

6 Relating the redispatch to changes dθ and dV ln
i

Formula (75) relates the mode change dλ to dθ and dV ln
i . It

remains to express dθ and dV ln
i in terms of the redispatch

dP using the linearization of the load flow equations.

The linearization of the load flow equations is

2n−m∑
j=1

Lijdzj = dPi, i = 1, 2, . . . , n, (77)

2n−m∑
j=1

Lijdzj = 0, i = m+ 1, . . . , n. (78)

where dz = (dδ, dV )T . In matrix form,

Ldz =

(
dP
0

)
(79)

Then we can use the matrix pseudo-inverse (indicated by
†) to obtain (

dδ
dV

)
= dz = L†

(
dP
0

)
(80)

Then dθ and dV ln are easily obtained:

dθk =
n∑
r=1

Ark dδr, k = 1, . . . , `. (81)

dV ln
i =

dVi
Vi
, i = m+ 1, . . . , n. (82)

7 Computing dλ for a 3-bus System

In order to show an example of the derivation in a more
explicit fashion, we compute dλ using the new coordinates
for the simple three bus system shown in Fig. 1. Bus 1 is a
generator bus, bus 2 is a connecting point, and bus 3 is a
load bus.

For this small system, δ = (δ1, δ2, δ3)T and V = (V2, V3)T ,
so that z = (δ1, δ2, δ3, V2, V3)T . The incidence matrix asso-
ciated with the network is

A =

 1 0
−1 1
0 −1

 , (83)

2 31

δ δ δ

V

2 3

3

1

2
V

1
p

1
q

2
p q

2

Fig. 1: 3-bus system

so that the z′ = (θ, ν) coordinates are

θ = AT δ =

(
1 −1 0
0 1 −1

) δ1
δ2
δ3

 =

(
θ1
θ2

)
, (84)

ν = |AT |

 lnV1
lnV2
lnV3

 =

(
1 1 0
0 1 1

) lnV1
lnV2
lnV3

 =

(
ν1
ν2

)
. (85)

Then the matrix transformation H is

H =
∂h

∂z
=


1 −1 0 0 0
0 1 −1 0 0
0 0 0 1

V2
0

0 0 0 1
V2

1
V3

 . (86)

An eigenvector
(
xδ1 , xδ2 , xδ3 , xV2 , xV3

)T
transforms as

x′ = Hx =


1 −1 0 0 0
0 1 −1 0 0
0 0 0 1

V2
0

0 0 0 1
V2

1
V3



x
δ1

x
δ2

x
δ3

x
V2

x
V3



=


x
δ1
− x

δ2

x
δ2
− x

δ3

x
V2

V2x
V2

V2
+
x
V3

V3

 =


x′θ1
x′θ2
x′ν1
x′ν2

 . (87)

The potential energy R of the system is

R = Rline +Rbus = −
∑
(i,j)=

(1,2),(2,3)

bijViVj cos(δi − δj)

−
3∑
i=1

(Piδi + 1
2biiV

2
i +Qi lnVi). (88)

Expressing Rline in z′ coordinates we have

R = R′line +Rbus = −
2∑
k=1

bke
νk cos θk

−
3∑
i=1

(Piδi + 1
2biiV

2
i +Qi lnVi). (89)
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To compute the sensitivity of the mode, first we will get
xT dLx, the numerator of (16), by using (59), so xT dLx =
xT (dLline)x+xT (dLbus)x. Working with the first term, ac-
cording to (60) we have to compute L′line, dL

′
line and (dH)x.

L′line =
b1e

ν1 cos θ1 0 b1e
ν1 sin θ1 0

0 b2e
ν2 cos θ2 0 b2e

ν2 sin θ2
b1e

ν1 sin θ1 0 −b1eν1 cos θ1 0
0 b2e

ν2 sin θ2 0 −b2eν2 cos θ2

 ,

(90)

and, using (43) and (44),

=


−q1 0 p1 0

0 −q2 0 p2
p1 0 q1 0
0 p2 0 q2

 .

Then

dL′line =


−dq1 0 dp1 0

0 −dq2 0 dp2
dp1 0 dq1 0
0 dp2 0 dq2

 (91)

and

x′T dL′linex
′ =


x′θ1
x′θ2
x′ν1
x′ν2


T 
−dq1 0 dp1 0

0 −dq2 0 dp2
dp1 0 dq1 0
0 dp2 0 dq2



x′θ1
x′θ2
x′ν1
x′ν2


(92)

=

2∑
k=1

[(x′νk)2 − (x′θk)2]dq
k

+ 2

2∑
k=1

x′θkx
′
νk
dp

k
.

(93)

Now we compute 2x′TL(dH)x

dH =


0 0 0 0 0
0 0 0 0 0

0 0 0 −dV2

V 2
2

0

0 0 0 −dV2

V 2
2
−dV3

V 2
3

 =


0 0 0 0 0
0 0 0 0 0

0 0 0 −dV
ln
2

V2
0

0 0 0 −dV
ln
2

V2
−dV

ln
3

V3

 ,

(94)

Then (dH)x is

dHx =


0 0 0 0 0
0 0 0 0 0

0 0 0 −dV
ln
2

V2
0

0 0 0 −dV
ln
2

V2
−dV

ln
3

V3



x
δ1

x
δ2

x
δ3

x
V2

x
V3



=


0
0

−xln
V2
dV ln

2

−xln
V2
dV ln

2 − xlnV3dV
ln
3

 . (95)

And

2x′TLdHx =

2


x′θ1
x′θ2
x′ν1
x′ν2


T 
−q1 0 p1 0

0 −q2 0 p2
p1 0 q1 0
0 p2 0 q2




0
0

−xln
V2
dV ln

2

−xln
V2
dV ln

2 − xlnV3dV
ln
3


= −

3∑
i=2

{
2

2∑
k=1

|Aik|(x′θkpk + x′νkqk)(xln
Vi

)

}
dV ln

i . (96)

From (93) and (96),

xT dLlinex =

2∑
k=1

[(x′νk)2 − (x′θk)2]dq
k

+ 2

2∑
k=1

x′θkx
′
νk
dp

k

−
3∑
i=2

{
2

2∑
k=1

|Aik|(x′θkpk + x′νkqk)(xln
Vi

)

}
dV ln

i .

(97)

Now we compute xT (dLbus)x.

Lbus =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −b22 0

0 0 0 0 −b33 + Q3

V 2
3

 , (98)

and

dLbus =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 −2Q3dV3

V 3
3

 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 −2
Q3dV

ln
3

V 2
3

 .

(99)

Then

xT dLbusx = −2
(
xln
V3

)2
Q3 dV

ln
3 . (100)

From (97) and (100),

xT dLx =

2∑
k=1

[(x′νk)2 − (x′θk)2]dq
k

+ 2

2∑
k=1

x′θkx
′
νk
dp

k

−
3∑
i=2

{
2

2∑
k=1

|Aik|(x′θkpk + x′νkqk)(xln
Vi

)

}
dV ln

i

− 2
(
xln
V3

)2
Q3dV

ln
3 . (101)
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From (68-69) and (71-73), (101) becomes

xT dLx =

2∑
k=1

{
[(x′νk)2 − (x′θk)2]p

k
− 2x′θkx

′
νk
q
k

}
dθk

+

3∑
i=2

{
2∑
k=1

|Aik|(Cq
k
q
k

+ Cp
k
p
k
) + CQiQi

}
dV ln

i .

(102)

Then

dλ = −x
T dLx

α

− 1

α

{
2∑
k=1

{
[(x′νk)2 − (x′θk)2]p

k
− 2x′θkx

′
νk
q
k

}
dθk

(103)

+

3∑
i=2

[
2∑
k=1

|Aik|(Cq
k
q
k

+ Cp
k
p
k
) + CQiQi

]
dV ln

i

}
.

(104)

8 Special Case: Mode with Zero Damping

To start to understand the general formula (75), it is useful
to consider special cases. Given a pair (λ, x) and following
[20], the quadratic equation x̄TQ(λ)x = 0 can be solved to
give

λ =


− l(x)

d(x)
if m(x) = 0,

−d(x)±
√
d(x)2 − 4m(x)l(x)

2m(x)
otherwise,

(105)

where m(x) = x̄TMx, d(x) = x̄TDx and l(x) = x̄TLx.
(105) is the only calculation in the paper that makes use of
x̄TQ(λ)x = 0 instead of xTQ(λ)x = 0.

Note that since M ≥ 0, D > 0, and L ≥ 0, we have m(x) ≥
0, d(x) > 0, and l(x) ≥ 0 for all x.

If the mode has zero damping so that λ is purely imaginary
with λ = jω, then from (105) we can see that 0 = d(x) =
x̄TDx = |

√
Dx|2. Then 0 =

√
Dx = Dx and (12) becomes

the real matrix equation (−ω2M + L)x = 0. This implies
that the eigenvector x (which is in general complex) can
be taken to be real. Then the components of x are either
exactly in phase or exactly 180 ◦ out of phase with each
other according to their sign. Moreover, in this case,

α = j2ωxTMx, (106)

−1

α
= j

1

2ωxTMx
, (107)

and the formula for dλ in (75) becomes purely imaginary.
We conclude that in the case that λ is purely imaginary,
changes in line angles and load bus voltage magnitudes do
not change the eigenvalue damping to first order; i.e, redis-
patch does neither stabilizes nor destabilizes the operating

point. The only first order change possible in this case is a
change in mode frequency.

This conclusion will remain approximately true if the mode
damping is very small. In the generic case of non-coincident
eigenvalues, since the eigenvector x is a smooth function of
parameters, it follows that a very lightly damped mode has
an approximately real eigenvector x and that the damping
effect of redispatch is small.

9 Special Case: Voltage Magnitudes Constant

Another special case, for which the general formula (75)
simplifies dramatically, is when the voltage magnitude is
considered constant in all the buses. The differential-
algebraic equations that describe the dynamics of the sys-
tem are (4). Then (70) simplifies to

xT dLx = −
∑̀
k=1

(x′θk)2p
k
dθk. (108)

Substituting (108) in (16), and letting λ = σ ± jω, with ω
positive,

dλ = dσ + jdω = −x
T dLx

α
=
∑̀
k=1

(x′θk)2p
k

α
dθk. (109)

9.1 Undamped mode case

If the voltage magnitudes are assumed constant and λ is a
mode of the system with zero damping; i.e., λ = ±jω, then
section 8 shows that the eigenvector x can be taken to be
real and α = j2ωxTMx. Then (109) becomes

dλ = dσ + jdω = −
∑̀
k=1

j
(x′θk)2p

k

2ωm
dθk (110)

Since (x′θk)2p
k
/(2ωm) is a positive real number,

dσ = 0, (111)

dω = −
∑̀
k=1

[
(x′θk)2p

k

2ωm

]
dθk. (112)

In accordance with section 8, (111) implies no change in
σ to first order. From (112), defining the positive number
(x′θk)2p

k
/2ωm = ak and substituting in (112),

dω = −
∑̀
k=1

ak.dθk = −a· dθ. (113)

Note that if a and dθ are parallel, every entry of the vector
a will contribute to dω. Which entries of the vector a will
contribute more? We answer this question in subsections
9.1.1 and 9.1.2.
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9.1.1 Undamped mode: 3-bus system

In order to illustrate the use of formula (109), we consider
a simple 3-bus system with the power flow and oscillat-
ing mode pattern of its undamped critical mode shown in
Fig. 2.

1 2
1 2 3

Fig. 2: The gray lines joining the buses show the magnitude of
the power flow with the grayscale and the direction of the power
flow with the arrows. Each line is numbered as shown. The red
arrows at each bus show the oscillation mode shape associated
with the critical eigenvalue of the system; that is, the magni-
tude and direction of the real entries of the right eigenvector x
associated to the critical eigenvalue λ. 1, 2 and 3 are generator
buses.

The mode pattern shows that generator 1 is swinging
against generator 3. Following the modal descriptions in
[11], 1 and 3 are antinodes of the system (locations with
highest swing amplitude). Generator 2 is not participating
in the oscillation, so it is a node (a location with zero swing
amplitude). In more general power systems the nodes and
antinodes may not be located exactly at the buses.

According to (112), the sensitivity of the critical eigenvalue
is

dω = −

[
(x

δ1
− x

δ2
)2p1

2ωm

]
dθ1 −

[
(x

δ2
− x

δ3
)2p2

2ωm

]
dθ2,

(114)

where p1 = b1V1V2 sin (δ1 − δ2) and p2 =
b2V2V3 sin (δ2 − δ3). As the power flow goes from bus
1 to bus 2, δ1 > δ2, then p1 > 0, and similarly p2 > 0. As
bus 2 is a node, x

δ2
= 0, and

dω = −

[
x2
δ1
p1

2ωm

]
dθ1 −

[
x2
δ3
p2

2ωm

]
dθ2. (115)

Defining the positive real numbers a1 = x2
δ1
p1/(2ωm) and

a2 = x2
δ3
p2/(2ωm) and substituting in (115),

dω = −a1dθ1 − a2dθ2 = −a· dθ, (116)

where a = (a1, a2)T , dθ = (dθ1, dθ2)T . Define ωi as the
natural frequency of the system in the base case; i.e., in the
case of zero redispatch. Define ωf as the natural frequency
of the system after redispatch, so that dω = ωf − ωi Then
ωf = ωi + dω. There are several cases:

1. Transfer between an antinode and an antinode. There
are two subcases:

(a) The transfer is made in the direction of the power
flow in the base case; i.e., from bus 1 to bus 3.
Then the vectors a and dθ are parallel. And from
(116), dω < 0 and ωf < ωi, so the frequency of
the mode decreases with the redispatch.

(b) The transfer is made in the opposite direction of
the power flow in the base case; i.e., from bus 3
to bus 1. Then a and dθ are antiparallel. From
(116), dω > 0 and ωf > ωi, so the frequency of
the mode increases with the redispatch.

2. Transfer between a node and an antinode; for example,
between bus 1 and 2. From (116), if the transfer is
made in the direction of the base case power flow, then
dθ is positive and ωf < ωi. If the transfer is made in
the opposite direction to the power flow in the base
case, then dθ < 0 and ωf > ωi; i.e, the frequency
increases with the redispatch.

From cases 1 and 2 we can conclude that the frequency of
the mode decreases when the vectors a and dθ are paral-
lel. As a is a vector with positive real entries, to decrease
the frequency the redispatch has to be done in the same
direction as the power flow in the base case.

9.1.2 Undamped mode: n-bus system

We consider an n-bus system that has an interarea mode
with zero damping; i.e, λ = ±jω. Then

dω = −
∑̀
k=1

[
(x′θk)2p

k

2ωm(x)

]
dθk = −

∑̀
k=1

akdθk. (117)

We note that ak ≥ 0 with k = 1, . . . `. If vectors a and
dθ, are parallel (i.e., every dθk > 0, or, in other words, the
redispatch causes power in every line to increase in the di-
rection of the power flow in the base case), then every entry
of the summation in (117) will contribute to the decrease
of the frequency of the mode. Any lines for which the re-
dispatch causes the power to decrease in the direction of
the power flow in the base case will tend to increase the
frequency of the mode.

The terms of the summation (117) that contribute more
correspond to those lines in which the product (x′θk)2p

k
is

large. These lines have large power flows and a large change
in the eigenvector angle across the line.

One case of interest is when there is a power system area
that includes an antinode A1 transferring power to another
power system area that includes an antinode A2, but A2 is
swinging in the opposite direction to A1. Consider a path of
lines joining A1 to A2 in which the power flow in each line
is in the direction from A1 to A2. Also assume that the
amplitude of the oscillation behaves sinusoidally in space
so that it decreases as one moves on the path away from
antinode A1 until a node N is encountered, and then the
amplitude increases, but with opposite phase as one passes
from the node N to antinode A2. Since antinodes are max-
ima of oscillation amplitude, near the antinode, changes in
the eigenvector components are small and (x′θk)2 is small.
At the node the amplitude of the oscillation is zero but the
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gradient of the change in amplitude is large, and (x′θk)2 is
large. Thus if there is redispatch from A1 to A2 that in-
creases the power flow in all the lines in the path, then the
lines in the path near node N contribute the most to de-
creasing the frequency of the mode. A redispatch from A1

to N , or a redispatch from N to A2 will also decrease the
frequency of the mode.

9.2 Damped mode case

Interarea modes are lightly damped electromechanical
modes of oscillation. In this section the sensitivity of a
lightly damped mode will be treated. The sensitivity of a
mode is given by (109). We write α as

α = αr + jα
I
. (118)

Substituting (118) in (109),

dλ = dσ + jdω =

[
αr − jαI
α2
r + α2

I

]∑̀
k=1

(x′θk)2p
k
dθk (119)

=

[
αr − jαI
α2
r + α2

I

]∑̀
k=1

(Re[(x′θk)2] + jIm[(x′θk)2])p
k

(120)

=
∑̀
k=1

αrRe[(x
′
θk

)2] + α
I
Im[(x′θk)2]

α2
r + α2

I

p
k

+ j
∑̀
k=1

αrIm[(x′θk)2]− α
I
Re[(x′θk)2]

α2
r + α2

I

p
k
. (121)

Then

dσ =
∑̀
k=1

α
I
Im[(x′θk)2] + αrRe[(x

′
θk

)2]

α2
r + α2

I

p
k
dθk

=
∑̀
k=1

arkdθk = a
r
· dθ, (122)

dω =
∑̀
k=1

αrIm[(x′θk)2]− α
I
Re[(x′θk)2]

α2
r + α2

I

p
k
dθk

=
∑̀
k=1

a
Ik
dθk = a

I
· dθ. (123)

The ideal case to increase the magnitude of σ and decrease
ω (and with this increase the damping ratio) is when ar and
a
I

are parallel vectors and antiparallel with the vector dθ.
If dθ is antiparallel just with ar, σ will increase, but also
ω will increase which is not good. If dθ is antiparallel just
with a

I
, ω will decrease, but also σ will decrease which is

also not good. Which entries of the vectors ar and a
I

will
contribute more?. We answer this question in subsections
9.2.1 and 9.2.2.

9.2.1 Damped mode: 3-bus system

In this section the sensitivity of the lightly damped elec-
tromechanical mode of oscillation of a 3-bus system is

treated. The power flow and oscillating mode pattern of
its critical mode is shown in Fig. 3.

1 2
1 2 3

Fig. 3: The gray lines joining the buses show the magnitude of
the power flow with the grayscale and the direction of the power
flow with the arrows. Each line is numbered as shown. The
red arrows at each bus show the oscillation mode shape; that
is, the magnitude and direction of the complex entries of the
right eigenvector x associated to the critical complex eigenvalue
λ. Buses 1, 2 and 3 are generator buses.

The mode pattern shows that generator 1 is swinging
against generator 3 and that bus 2 is not participating in
the oscillation. According to (122) and (123), the sensitiv-
ity of the nonzero eigenvalue of the system is given by

dσ =
α
I
Im[(x′θ1)2] + αrRe[(x

′
θ1

)2]

α2
r + α2

I

p
1
dθ1

+
α
I
Im[(x′θ2)2] + αrRe[(x

′
θ2

)2]

α2
r + α2

I

p2dθ2 (124)

= ardθ, (125)

dω =
αrIm[(x′θ1)2]− α

I
Re[(x′θ1)2]

α2
r + α2

I

p
1
dθ1

+
αrIm[(x′θ2)2]− α

I
Re[(x′θ2)2]

α2
r + α2

I

p
2
dθ1 (126)

= a
I
dθ, (127)

where p1 = b1V1V2 sin (δ1 − δ2) and p2 =
b2V2V3 sin (δ2 − δ3). As the power flow goes from bus
1 to bus 2, δ1 > δ2 so that p1 > 0. Similarly, p2 > 0.

From Fig. 3 we can see that xδ1 is in the second quadrant
of the complex plane and that xδ3 is in the fourth quadrant
of the complex plane. Then

1. The complex numbers xTMx, xTDx are in the fourth
quadrant of the complex plane. Then

α = 2λxTMx+ xTDx

= 2(−σ + jω)xTMx+ xTDx

= αr + jα
I
, (128)

with αr, αI positive real numbers and αr � α
I
.

2. a
I1
< 0, a

I2
< 0. So from (126) to decrease ω, the

redispatch has to be done in the direction of the power
flow in the base case. This result coincides with the
conclusions for the undamped mode case.

3. Re[(x′θ1)2] > 0, Re[(x′θ2)2] > 0, Im[(x′θ1)2] < 0,
Im[(x′θ2)2] < 0, so to increase |σ| we have to make
the redispatch through the line in which the entry of
ar is negative.

Note that |dσ| < |dω|.
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9.2.2 Damped mode: n-bus system

The sensitivity of an electromechanical mode of oscillation
of a network of n buses is given by equations (122) and
(123). The ideal case to increase the magnitude of σ and
decrease ω (and with this increase the damping ratio) is
when ar, aI are parallel vectors and antiparallel with the
vector dθ. If dθ is antiparallel just with ar, σ will increase,
but also ω will increase which is not good. If dθ is an-
tiparallel just with a

I
, ω will decrease, but also σ will de-

crease which is also not good. The terms of the summations
(122) and (123) that contribute more are those in which the
product (x′θk)2p

k
is large. We would expect, as discussed

in section 9.1.2, that (x′θk)2p
k

would be large in lines with
substantial power flows that are near nodes at which the os-
cillation phase changes by approximately 180 degrees. The
redispatch should be chosen to exploit these lines, but we
need to learn more about the general spatial structure of
the modes to be able to better describe this with confidence
and in detail.

10 Verifying the new formula: AC power flow, 10-
bus system

In this section, formula (75) is verified in the 10-bus system
shown in Fig. 4. The system is based on the system in [19],
and consists of two similar areas connected by a weak tie
line. Each generator is represented by the same classical
model with H = 6.5 s, D = 1.0 s, and transient reactance
x′ = 0.3. The internal constant voltage magnitudes of the
generators are V1 = 0.998337, V2 = 1.26781, V3 = 1.0782
and V4 = 1.1449. In the base case, p

7
= 3.8897 is flowing

through the tie line from area 1 to area 2. Table 1 shows
the generation and the power demanded by the constant
loads in the base case.

G1

G2

0.025

0.01 0.22

'x

'x
0.01

L1 L2

0.025

G4

G3

'x

'x

Area 1 Area 2

Fig. 4: 10-bus system

Table 1: Generator and load bus data of 10-bus system
bus type Pg PL QL
1 G 7.0 0.0 0.0
2 G 7.0 0.0 0.0
3 G 7.22049 0.0 0.0
4 G 7.0 0.0 0.0
5 L 0.0 10.110245 1.0
6 L 0.0 18.110245 1.0

All the numerical computation is done with the software
Mathematica. First the power flow equations are solved,
and then the base case eigenvalues are computed. The sys-
tem has three electromechanical modes. Table 2 shows the
electromechanical eigenvalues of the system for the base
case.

Table 2: Eigenvalues of 10-bus system in the base case

mode base case eigenvalue (rad/s) Swing profile
λ1i -0.038462 + 8.8206i 1,4 ↔ 2,3
λ2i -0.038462 + 8.6023i 1,4 ↔ 2,3
λ3i -0.038462 + 2.3832i 1,2 ↔ 3,4

1

5

2

6 3

9

4

8

7

1
7

2

8
3

9

4

10
5 6

Fig. 5: The gray lines joining the buses show the magnitude of
the power flow with the grayscale and the direction of the power
flow with the arrows. Each line is numbered as shown. The red
arrows at each bus show the oscillation mode shape; that is, the
magnitude and direction of the entries of the right eigenvector
xδ associated with the complex eigenvalue λ3i. 1, 2, 3 and 4 are
generator buses and 5 and 6 are load buses.

The power flow and oscillation for the base case is shown
in Fig. 5 as well as the mode pattern of λ3i. The mode
pattern shows that area 1 is swinging against area 2.

Table 3: λ3f for redispatch from G1 to G3 in 10-bus system

Redispatch Exact mode Approximate mode
0.000 -0.038462 + 2.3832j -0.038462 + 2.3832j
0.003 -0.038462 + 2.3785j -0.038462 + 2.3786j
0.006 -0.038462 + 2.3738j -0.038462 + 2.3739j
0.009 -0.038462 + 2.3691j -0.038462 + 2.3692j
0.010 -0.038462 + 2.3675j -0.038462 + 2.3676j
0.03 -0.038462 + 2.3350j -0.038462 + 2.3357j
0.06 -0.038462 + 2.2829j -0.038462 + 2.2858j
0.09 -0.038462 + 2.2262j -0.038462 + 2.2331j
0.10 -0.038462 + 2.2061j -0.038462 + 2.2149j
0.15 -0.038462 + 2.0947j -0.038462 + 2.1173j
0.20 -0.038462 + 1.9586j -0.038462 + 2.0060j
0.25 -0.038462 + 1.7810j -0.038462 + 1.8735j
0.30 -0.038462 + 1.5152j -0.038462 + 1.7005j

We examine changes in λ3i to test formula (75). Redispatch
is made between generator 1 of area 1 and generator 3 of
area 2. The generation of G1 is increased by an amount
r and the generation of G3 is decreased by r. Using for-
mula (75), dλ3 is computed for several values of r, then
the approximate eigenvalue λ3f = dλ3 + λ3i is calculated

13
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Fig. 6: Comparing the exact and approximate modes in the
10-bus system.

for every r. Table 3 shows λ3f for different steps of re-
dispatch between G1 and G3 and compares the exact and
approximate eigenvalues. Fig. 6 compares the exact and
approximate eigenvalues of table 3 in the complex plane
and Fig. 7 compares the exact and approximate imaginary
part of the eigenvalues versus the redispatch. From table 3
we can confirm that formula (75) reproduces the first order
variation of the eigenvalues with respect to the redispatch.
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Fig. 7: Exact and approximate mode frequencies versus amount
of redispatch in the 10-bus system.

11 6-bus system

In this section, we illustrate the use of formulas (122) and
(123) in a simple 6-bus system. These formulas compute
the sensitivity in the special case in which the voltage is
considered constant at every bus. The loads are modeled
with frequency dependence of real power. The bus data
of the system is given in the table 4 and the data of the
transmission lines is given in table 5.

The system has two electromechanical modes. Table 6
shows the electromechanical eigenvalues of the system for
the base case.

Table 4: Bus data of the 6-bus system

bus type H (s) D (s) Pg PL
1 G 3.0 2.0 0.8 0.0
2 G 3.0 2.0 0.8 0.0
3 G 24.0 16.0 6.4 0.0
4 L 0.0 2.0 0.0 1.0
5 L 0.0 2.0 0.0 1.0
6 L 0.0 16.0 0.0 6.0

Table 5: Transmission line data of the 6-bus system
Line x

1 0.45
2 0.45
3 0.0563
4 0.02
5 0.075

Table 6: Eigenvalues of the 6-bus system in the base case
swing

f (Hz) ζ(%) eigenvalue (rad/s) profile
λ1i 1.53802 1.81694 -0.175611 + 9.66364j 1,2↔3
λ2i 1.72281 1.54097 -0.166826 + 10.8247j 1 ↔ 2

1

2

4

3

5

1

4

2

5

3

6

Fig. 8: Six-bus system: The gray lines joining the buses show
the magnitude of the power flow with the grayscale and the
direction of the power flow with the arrows. Each line is num-
bered as shown. The red arrows at each bus show the oscillation
mode shape; that is, the magnitude and direction of the com-
plex entries of the right eigenvector xδ associated to the critical
complex eigenvalue λ2i. Buses 1 and 2 are antinodes and buses
3,4,5,6 are nodes.

The power flow oscillation in the base case and the mode
pattern of λ2i are shown in Fig. 8. The mode pattern
shows that G1 is swinging against G2. The real coefficients
a
rk

and a
Ik

in the equations (122) and (123) for the 6-bus
system are shown in table 7.

From table 7, coefficients related to the lines 1 and 2 are
the biggest components of the vectors ar and a

I
, but only

the coefficients associated to the line 1 have the same sign,
a
r1
< 0 and a

I1
< 0. Line 1 connects generator G1, so

it is clear from table 7 that increasing G1 helps to damp
the oscillation. Fig. 9 shows the eigenvalue changes for
redispatch between G1-G3, G1-G2, and G2-G3. When G1
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Table 7: Coefficients a
rk

and a
Ik

for the 6-bus system

ar1 - 0.001346 a
I1

- 0.70652
ar2 0.001275 a

I2
- 1.13594

a
r3

0.000055 a
I3

- 0.006992
a
r4

0.0 a
I4

- 0.000351
a
r5

0.0 a
I5

- 0.001029

(antinode) increases and G3 (node) decreases, |σ2| increases
and ω2 decreases. If G1 decreases and G3 increases the
effect is opposite. Any other combination of generators
increases or decreases both the real and imaginary part of
λ2. Table 8 shows the values of λ2f = dλ2+λ2i for different
steps of redispatch between G1 and G3. The damping is
depicted in Fig. 10 as a function of the redispatch of active
power. The damping ratio improves best when G1 increases
and G3 decreases and when G2 increases and G3 decreases.

æ

æ

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à

à

à

ì

ì

ì

ì

ì

ì

ì

ì

- 0.166835 - 0.166830 - 0.166825 - 0.166820 - 0.166815
ReH Λ2L10.820

10.822

10.824

10.826

10.828

ImH Λ2L

ì G2 to G3

à G1 to G2

æ G1 to G3
+)

+)

+)

Fig. 9: Eigenvalues for redispatches of the 6-bus system.

Table 8: λ2f of redispatch G1 to G3 in the 6-bus system

Redispatch λ2f
0.009 -0.166830 + 10.8219j
0.006 -0.166830 + 10.8228j
0.003 -0.166828 + 10.8238j
0.0 -0.166826 + 10.8247j

-0.003 -0.166824 + 10.8257j
-0.006 -0.166822 + 10.8266j
-0.009 -0.166821 + 10.8276j

12 Conclusions

We derive a new formula (75) for the sensitivity of oscilla-
tory eigenvalues with respect to generator redispatch. The
motivation is to understand and improve the damping of
interarea oscillations with generator redispatch.

We use a power system dynamic model that expresses both
real and reactive power flows and allows for variation of
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Fig. 10: Damping ratio versus redispatch a) from G1 to G3,
b) from G1 to G2, c) from G2 to G3.

both angle and voltage magnitudes. The generator dynam-
ics are a simple second order swing equation. The load mod-
eling allows for frequency dependence and reactive power
depending on voltage magnitude, but does not allow real
power to depend on voltage magnitude. These modeling
assumptions are the usual assumptions permitting energy
function analysis of the power system, and in particular the
network has a symmetric Laplacian. Indeed the derivation
of the formula exploits the energy function structure. The
hypothesis of the generator dynamic modeling is that there
is some equivalent second order dynamic model for each
generator that suffices for representing the wide-area oscil-
lations, but that we do not need to know the parameters
of each equivalent generator model. The formula (75) only
includes the combined generator dynamics as a common
factor that is the same for all redispatches.

In the past, there have multiple unsuccessful attempts to
derive a formula with the properties of (75), and sometimes
this derivation has been considered to be impossible. The
combination of several ideas in this paper, some new and
some old, enables the successful derivation of formula (75):

1. The new idea of working with the complex symmetric
matrix form xTQx (and not the more obvious Hermi-
tian matrix form x̄TQx).

2. New “line” coordinates (θ, ν) for the angle differences
and logarithm of the product of the voltages across
the transmission lines. These new coordinates greatly
simplify parts of the derivation.

3. Quadratic formulation of the eigenvalue problem. This
formulation was recently applied to a power systems
model by Mallada and Tang in [20].3

4. The classical assumptions of lossless lines and no de-
pendence of load real power on voltage magnitude that

3[20] derives the sensitivity of the Fiedler eigenvalue (the small-
est magnitude nonzero eigenvalue of the Laplacian) near saddle node
bifurcation with respect to power injections in the case of constant
voltage magnitudes.
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yield the energy function R and a symmetric network
Laplacian [2, 1, 23, 30, 25, 6].

The new formula (75) that describes the mode sensitivity
has a factor α in the denominator that is the same for all
generator redispatches, and α depends on the eigenvalue,
the equivalent generator dynamics, and the modal eigen-
vector. Since the denominator of (75) is the same for all
redispatches, to a large extent we can discriminate the effec-
tive redispatches by examining the effect of the redispatch
on the numerator of (75).

The numerator of (75) expresses the changes in the mode in
terms of the changes in angles across lines and load voltage
magnitudes caused by the redispatch, with coefficients that
depend on the mode shape and the base case power flows
in the lines and the reactive power load demands. The base
case power flows and the reactive power load demands are
available from static state estimation. The mode shape is
available from synchrophasor measurements, as discussed
below. The new formula (75) is numerically verified in a 10
bus example in section 10.

Line coordinates θ that are the angle differences across the
lines are discussed by Bergen and Hill in [2]. It is also
known that it can be useful to divide the reactive power
balance equations by the bus voltage magnitude, and use
the logarithm of the bus voltage magnitudes, as, for exam-
ple, in [24]. The line coordinates (θ, ν) are a generalization
that includes ν coordinates that describe the logarithm of
the product of the voltage magnitudes associated with the
lines, not the buses. The line coordinates not only greatly
simplify the derivation of the formula, but are also expected
to make the formula easier to interpret when it is applied.
There are dependencies between the line coordinates in gen-
eral meshed networks that are discussed in section 5.1.

The redispatch of real power naturally changes the pattern
of real power flows and hence the angles across lines. Any
reactive power flows caused by generator redispatch may
also alter the voltage magnitude products across lines. The
numerator of formula (75) identifies in which lines these
changes in power flow is most effective.

The main emphasis of this paper is deriving formula (75).
We have also begun to explore the implications and applica-
tions of (75) and we now indicate some initial conclusions.

1. In the case that the oscillatory mode has exactly zero
damping, the formula predicts that, to first order, the
generator redispatch changes only the mode frequency
and not the mode damping. This suggests that genera-
tor redispatch could be more effective for maintaining
sufficient damping than for emergency control when
damping has vanished.

2. In the special case of considering real power dynamics
only with constant voltage magnitudes, the formula

(75) reduces to the remarkably simple form (109), in
which changes in the mode depend on the changes in
angles across lines caused by the redispatch, the real
power flow in the lines, and the line angle coordinates
of the mode shape eigenvector x.

3. The formula indicates which lines have suitable power
flow and eigenvector components to affect oscillation
damping. In particular, it is effective to use the redis-
patch to change the angle across lines that have both
changes in the mode shape across the line and sufficient
power flow in the right direction.

We note the following considerations and speculations to-
wards implementing formula (75) to choose the generators
to redispatch that are effective in maintaining suitable os-
cillation damping or damping ratio. The complex number
α in the denominator of (75) that combines all the equiva-
lent generator dynamics is common to all redispatches, so
an approximate indication of the argument of α is probably
all that is needed. The base case line power flows are known
from the state estimator, and the load flow equations can be
used to relate the generator redispatches to changes in the
angles across lines and the load voltage magnitudes. The
main remaining challenge is to determine the mode shape.

The mode shape is the quadratic eigenvector x correspond-
ing to λ and it is easy to obtain from a conventional right
eigenvector. The mode shape is in principle, and to some
considerable extent in practice, available from ambient or
transient synchrophasor measurements [29, 3, 10]. This is
important since it is desirable to use measurements to min-
imize the use of poorly known dynamic power system mod-
els. Moreover, it is established [26, 33, 31, 18] that syn-
chrophasors can make online measurements of the critical
eigenvalue λ, the oscillatory mode frequency and damping.
And, especially for the low frequency interarea modes, once
the mode frequency is known, the mode might have a recur-
rent and fairly robust mode shape. Then it is conceivable
that historical observations or offline computations or gen-
eral principles about the mode shape could be used to aug-
ment or interpolate the real-time observations, or that the
real time observations could be used to verify a predicted
mode shape. Thus some combination of measurements and
calculation from models could yield the mode shape needed
to apply the formula to online calculations of optimum gen-
eration redispatch.

An alternative application of the formula is to use it to spec-
ify and justify heuristics for oscillation damping based on
the mode shape and line power flows. This approach would
similarly use a combination of measurements and calcula-
tion from models to obtain the mode shape, but one might
expect that the approximate overall form of the mode shape
might suffice. Our initial results suggest a basis for heuris-
tics for redispatch based on changing the angles across lines
with sufficient power flow and sufficient changes in the mode
shape. These heuristics would be similar to heuristics for
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modal damping due to Fisher and Erlich [11, 12] that in-
spired our search for analytic patterns in modal damping,
and we would like to confirm and refine these heuristics in
future work.

More generally, for future work we will fully explore the im-
plications and applications of the formula in order to realize
its potential for controlling oscillation damping by genera-
tor redispatch. The formula could enable some combination
of observations, computations and heuristics to more effec-
tively damp interarea oscillations.
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Appendix: Jacobian and Quadratic Eigenstructure

In this appendix we show that the eigenvalues and eigenvec-
tors of the quadratic form and the Jacobian of the system
correspond. It is convenient to work with the full system
of 2n −m equations, assumed to have balanced power in-
jections, and without a reference bus. Then the system
always has a mode with all angles increasing with a zero
eigenvalue, which we can neglect.

To compute the eigenvalues of the system Jacobian, first we
will change the second ordinary differential equations (9) to
a set of first ordinary differential equations by defining the
variable ω

(2n−m)+i
= δ̇i, i = 1 . . .m. Then the linearized

equations become

∆̇zi = ∆ω
(2n−m)+i

, i = 1, . . .m. (A.1)

∆̇ω
(2n−m)+i

= − di
mi

∆ω
(2n−m)+i

−
2n−m∑
j=1

Lij
mi

∆zj , i = 1, . . .m.

(A.2)

0 = −
2n−m∑
j=1

Lij∆zj , i = m+ 1, . . . 2n−m.

(A.3)

Writing (A.1-A.3) in matrix form we have(
˙∆zd

0

)
=

(
J11 J12
J21 J22

)(
∆zd

∆za

)
, (A.4)

where zd is a vector of size 2m composed by the dynamical
variables of the system, and ∆za is a vector of size 2(n−m)
composed of the algebraic variables.

The differential algebraic system can be reduced to a purely
differential system by expressing the algebraic variables in
terms of the dynamic variables and substituting them in
the system. This leads to ∆za = −J−122 J21∆zd and the
linearization of the reduction

˙∆zd = Jred∆z
d, (A.5)

where Jred = J11−J12J−122 J21. Once the system is reduced,
the symmetry of the Laplacian of the system is destroyed.

To avoid the reduction (A.5), it is better to work directly
with the differential-algebraic equations [28]. (A.4) can be
written as a singular ordinary differential equation system

E

(
˙∆zd

˙∆za

)
= J

(
∆zd

∆za

)
, where E =

(
I 0
0 0

)
. (A.6)

To find the eigenvalues associated with (A.6), the general-
ized eigenvalue problem has to be solved; i.e., µEv = γJv.
The eigenvalues λ are defined as λ = µ

γ . If γ = 0, the eigen-
value λ is regarded as infinite. The infinite eigenvalues arise
from the singularity of the E matrix.

For the finite eigenvalues of the Jacobian, we can write
Jv = λEv. The eigenvector v is v = (vd, va), where the
size of the vector vd is the number of dynamics variables
(zd), and the size of va is the number of algebraic variables.
It has been proved [28] that for any triple (λ, vd, va) that
satisfies (A.6), the pair (λ, vd) satisfies (A.5). Conversely if
(λ, vd) satisfies the reduced system, then (λ, vd, va) satisfies
the complete system with va = −J−122 J21v

d, so the finite
eigenvalues of J are the modes of the system.

Now we will prove that the finite eigenvalues of J are finite
eigenvalues of Q. Let v be an eigenvector associated with
the finite eigenvalue λ; that is, Jv = λE. Then, from (A.1-
A.3),

λvi = v(2n−m)+i (A.7)

λv(2n−m)+i = − di
mi

v(2n−m)+i −
2n−m∑
j=1

Lij
mi

vj (A.8)

0 = −
2n−m∑
j=1

Lijvj . (A.9)

Using (A.7) in (A.8), and multiplying by mi,

λ2mivi + λdivi +

n+m∑
j=1

Lijvj = 0 (A.10)

n+m∑
j=1

Lijvj = 0. (A.11)

But (A.10)-(A.11) is (11). Then the eigenvector x of the
quadratic eigenvalue problem with finite eigenvalue λ corre-
sponds exactly to the eigenvector v = (λxg, x) of J , where
xg is the vector of components of x corresponding to the
generator angles.
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