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Robotic Lower-Limb Prostheses:  Great Potential but Difficult to Tune

• Traditional passive prostheses lack the capability of generating joint 
power and thus are unable to restore normal walking gait.
 Problems include asymmetric gait, greater energy consumption, 

higher hip torque/power, and inability to assist power-demanding 
locomotive functions (such as upslope walking and stair ascent).

• Robotic lower-limb prostheses (RLLPs) represent a fundamental change 
in energetic behavior and provide the potential to significantly improve 
the mobility of the amputee users.

• However, as smart wearable robots, RLLPs require frequent 
adjustments of numerous control parameters for personalized fitting, 
placing a heavy burden to the amputee users.

• Personalized Prosthesis Controller Adaptation (PPCA): Automating 
Controller Tuning and Intent Recognizer Retraining to Accelerate 
Large-Scale Adoption of RLLPs



Research Overview:  Automatic Tuning of Prosthesis Controller and Intent 
Recognizer with Global Sensing 

• Human gait in locomotion is a form of full-body dynamics, not just leg and foot.  
This is especially important for robotic prosthesis-aided amputee gait, in which 
prosthesis action directly affects the full-body movement.

• In the PPCA, the prosthesis tuning is conducted based on the 
sensor inputs reflecting full-body movement, including the upper 
body movement and contralateral (healthy) leg movement.

 #1)  Fundamental studies on robotic prosthesis-assisted 
walking and prosthetist-conducted controller tuning.

 #2)  Wearable sensor development.

 #3)  Automatic tuning of prosthesis motion controller.

 #4)  Quasi-supervised adaptation of the intent recognizer in 
the prosthesis control system.



Our Gait Quality Metrics of Study
1. POGS: Prosthetic Observational Gait Score which is scored 

visually by a clinician on a scale of 0-32 (lower is better).
2. GDI: Gait Deviation Index  based on 3D kinematics of lower 

limb with scores ≥ 100 indicative of normal gait
3. Impulse Asymmetry - the absolute value difference in impulse 

between limbs
4. Lateral Sway - the difference in the max and min mediolateral 

trajectory of a sternal chest marker

#1A:  Biomechanical Study on Gait Quality under Systematic Joint 
Constraints 

Four systematic constraints applied during experiment. 
A.  baseline condition with no constraints. 
B.  ankle constraint 
C.  knee constraint 
D.  knee+ankle constraints 



Herrin et al. in prep.

#1A:  Biomechanical Study on Gait Quality under Systematic Joint 
Constraints - Results



• N=7 individuals with below-the-knee amputation 
walked on their clinically prescribed passive foot and a 
robotic powered prosthesis while we collected lower 
limb and trunk biomechanics

• The robotic powered prosthesis (Humotech PRO-001) 
was tuned by a prosthetist according to standard 
clinical practices (i.e. observational gait analysis and 
patient feedback)

• We analyzed 4 common gait quality metrics post-hoc 
over each tuning trial to better understand gait quality 
changes over the tuning process and compared the 
passive and tuned gait metrics

• Two sample t-tests were used to compare differences 
between passive and tuned powered foot conditions 
with significance set at alpha <0.05

#1B:  Prosthetist-Conducted Controller Tuning and Gait Quality Assessment
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#2:  Trunk Motion Sensor and Shoe/Foot Motion Sensor

• Trunk motion and shoe motion sensors are being developed by 
incorporating IMUs with Bluetooth wireless communication modules 
for real-time data collection and processing.

• The shoe sensor is 
especially useful 
(intended to be worn on 
the healthy-side foot), 
providing the detection 
of important gait events 
and supporting the 
recognition of the users’ 
locomotive mode.

0- sitting
1- standing
2- sit to stand

6- stair ascent
7- stair descent
8- cycling

3- stand to sit
4- walking
5- running

9-class activity recognition with 
94.8% accuracy



#3:  Automatic Tuning of Prosthesis Motion Controller

• Method 1:  Direct-Acting Asymmetry-Based Tuning.
 Based on the measured foot motion/force asymmetry and 

lateral sway, we are developing a closed-loop adaptation 
algorithm to regulate the dynamic behavior of the prosthetic 
ankle in stance (especially the push-off power).

• Method 2:  Virtual Prosthetist Tuning Algorithm.
 Emulating the decision-making process of an experienced 

prosthetist in tuning the controller, we are developing a 
multi-class SVM algorithm.

 For each parameter, the SVM-identified class represents 
the adjustment action: maintain, increase/decrease slightly, 
or increase/decrease significantly.



#4a:  Data Collection for Intent Recognizer Adaptation

• We developed a lightweight exoskeleton-based gait data collection 
system to facilitate the data collection outside research labs.

• Multi-modal sensors are used to create a 
comprehensive dataset: inertia sensors, joint 
goniometers, foot plantar pressure sensors, and a 
head-mount camera. 

• A data collection study is being conducted to create a dataset of gait 
data in real-world ambulation scenarios.  A typical sequence in the 
protocol: climb up n flights of stairs, walk down the hallway to the 
other side of the building, go down m flights of stairs, and walk back 
to the original side of the building.






#4b:  Quasi-Supervised Intent Recognizer Adaptation

• Signals from wearable sensors (chest and shoe) provides valuable 
information related to the locomotive mode and mode transition.

• The Virtual Supervisor-generated training data will 
be merged with existing (core) training data to 
retrain the intent recogizer to continuously 
improve its performance for each user.

• Utilizing the wearable sensor signals in conjunction with the 
prosthesis-embedded sensor signals, we are developing a classifier 
with very high accuracy (Virtual Supervisor), using the method of 
classification with rejection. 
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