NRI: INT: COLLAB: Accelerating Large-Scale Adoption of Robotic Lower-Limb Prostheses through Personalized Prosthesis Controller Adaptation

PIs and Co-PIs:

Xiangrong Shen¹, Edward Sazonov¹, Young-Hui Chang², and Kinsey Herrin²

Personnel:

Md Rejwanul Haque¹, Md Rayhan Afsar¹, Samuel Kwak², Chase G. Rock², Margaret Berry², Gautam Desai², Saranya Gourisetti², and Isabella Turner²,

¹University of Alabama, Tuscaloosa, AL

²Georgia Institute of Technology, Atlanta, GA

NSF-NRI 1734501 (UA) NSF-NRI 1734416 (GT)

Robotic Lower-Limb Prostheses: Great Potential but Difficult to Tune

- Traditional passive prostheses lack the capability of generating joint power and thus are unable to restore normal walking gait.
 - Problems include asymmetric gait, greater energy consumption, higher hip torque/power, and inability to assist power-demanding locomotive functions (such as upslope walking and stair ascent).
- Robotic lower-limb prostheses (RLLPs) represent a fundamental change in energetic behavior and provide the potential to significantly improve the mobility of the amputee users.

- However, as smart wearable robots, RLLPs require frequent adjustments of numerous control parameters for personalized fitting, placing a heavy burden to the amputee users.
- <u>Personalized Prosthesis Controller Adaptation (PPCA)</u>: Automating Controller Tuning and Intent Recognizer Retraining to Accelerate Large-Scale Adoption of RLLPs

Research Overview: Automatic Tuning of Prosthesis Controller and Intent Recognizer with Global Sensing

- Human gait in locomotion is a form of full-body dynamics, not just leg and foot. This is especially important for robotic prosthesis-aided amputee gait, in which prosthesis action directly affects the full-body movement.
- In the PPCA, the prosthesis tuning is conducted based on the sensor inputs reflecting full-body movement, including the upper body movement and contralateral (healthy) leg movement.
 - #1) Fundamental studies on robotic prosthesis-assisted walking and prosthetist-conducted controller tuning.
 - ➢ #2) Wearable sensor development.
 - ➤ #3) Automatic tuning of prosthesis motion controller.
 - #4) Quasi-supervised adaptation of the intent recognizer in the prosthesis control system.

#1A: Biomechanical Study on Gait Quality under Systematic Joint Constraints

Four systematic constraints applied during experiment.

- A. baseline condition with no constraints.
- B. ankle constraint
- C. knee constraint
- D. knee+ankle constraints

Our Gait Quality Metrics of Study

- **1. POGS: Prosthetic Observational Gait Score** which is scored visually by a clinician on a scale of 0-32 (lower is better).
- GDI: Gait Deviation Index based on 3D kinematics of lower limb with scores ≥ 100 indicative of normal gait
- **3.** Impulse Asymmetry the absolute value difference in impulse between limbs
- Lateral Sway the difference in the max and min mediolateral trajectory of a sternal chest marker

#1A: Biomechanical Study on Gait Quality under Systematic Joint Constraints - **Results**

	Conditions Compared									
	Joint Constraint Comparisons						Speed Comparisons			
			Baseline	Ankle	Ankle vs.	Knee vs.	0.7 m/s	0.7 m/s	0.85 m/s	General Gait Deficit
	Baseline	Baseline	vs. Knee+	VS.	Knee+	Knee+	vs. 0.85	vs. 1.0	vs 1.0	Sensitivity
Gait Metrics	vs. Ankle	vs. Knee	Ankle	Knee	Ankle	Ankle	m/s	m/s	m/s	Score
Lateral Sway	0.186	0.017*	0.008*	0.053	0.004*	1	0.006*	0.002*	0.126	5
GDI	p<0.05*	p<0.05*	p<0.05*	0.351	0.022*	1	0.207	0.207	0.207	4
POGS	0.075	p<0.001*	0.001*	0.002*	0.002*	1	0.234	0.234	0.234	4
Impulse Asymmetry	0.565	0.23	0.002*	0.466	0.014*	0.019*	0.427	0.427	0.427	3

#1B: Prosthetist-Conducted Controller Tuning and Gait Quality Assessment

- N=7 individuals with below-the-knee amputation walked on their clinically prescribed passive foot and a robotic powered prosthesis while we collected lower limb and trunk biomechanics
- The robotic powered prosthesis (Humotech PRO-001) was tuned by a prosthetist according to standard clinical practices (i.e. observational gait analysis and patient feedback)
- We analyzed 4 common gait quality metrics post-hoc over each tuning trial to better understand gait quality changes over the tuning process and compared the passive and tuned gait metrics
- Two sample t-tests were used to compare differences between passive and tuned powered foot conditions with significance set at alpha <0.05

Lateral Sway metric could differentiate between passive prosthesis and clinically tuned robotic prosthesis

#2: Trunk Motion Sensor and Shoe/Foot Motion Sensor

 Trunk motion and shoe motion sensors are being developed by incorporating IMUs with Bluetooth wireless communication modules for real-time data collection and processing.

The shoe sensor is especially useful (intended to be worn on the healthy-side foot), providing the detection of important gait events and supporting the recognition of the users' locomotive mode.

•

9-class activity recognition with 94.8% accuracy

3- stand to sit

4- walking

5- running

Shoe Motion Sensor

6- stair ascent

7- stair descent

8- cycling

#3: Automatic Tuning of Prosthesis Motion Controller

- Method 1: Direct-Acting Asymmetry-Based Tuning.
 - Based on the measured foot motion/force asymmetry and lateral sway, we are developing a closed-loop adaptation algorithm to regulate the dynamic behavior of the prosthetic ankle in stance (especially the push-off power).
- Method 2: Virtual Prosthetist Tuning Algorithm.
 - Emulating the decision-making process of an experienced prosthetist in tuning the controller, we are developing a multi-class SVM algorithm.
 - For each parameter, the SVM-identified class represents the adjustment action: maintain, increase/decrease slightly, or increase/decrease significantly.

#4a: Data Collection for Intent Recognizer Adaptation

- We developed a lightweight exoskeleton-based gait data collection system to facilitate the data collection outside research labs.
- A data collection study is being conducted to create a dataset of gait data in real-world ambulation scenarios. A typical sequence in the protocol: climb up *n* flights of stairs, walk down the hallway to the other side of the building, go down *m* flights of stairs, and walk back to the original side of the building.
- Multi-modal sensors are used to create a comprehensive dataset: inertia sensors, joint goniometers, foot plantar pressure sensors, and a head-mount camera.

#4b: Quasi-Supervised Intent Recognizer Adaptation

- Signals from wearable sensors (chest and shoe) provides valuable information related to the locomotive mode and mode transition.
- Utilizing the wearable sensor signals in conjunction with the prosthesis-embedded sensor signals, we are developing a classifier with very high accuracy (Virtual Supervisor), using the method of classification with rejection.
- The Virtual Supervisor-generated training data will be merged with existing (core) training data to retrain the intent recogizer to continuously improve its performance for each user.

