
MCube Lab

Accelerating Robotic
Manipulation with

Data-Enhanced
Contact Mechanics

NRI PI meeting
October 29, 2018

Byron Boots (GaTech)
Mathew Mason (CMU)

Alberto Rodriguez (MIT)

NRI: Collaborative Research
Accelerating Robotic Manipulation with Data-Enhanced Contact Mechanics

PIs: Boots (GaTech), Mason (CMU) and Rodriguez (MIT)

Motivation
Reliable physical interaction requires
empirical data.

Goals
1. How can we use data to improve contact

models?
2. How can we use those improved models

for inference and control?

Key Challenges
Noise, non-smooth dynamics, hysteresis, deformation.

Experimental Datasets

Planar Pushing

Planar Impacts

Prehensile Pushing

Experimental Validation of Contact Dynamics for in-Hand Manipulation
ISER’16, by Roman Kolbert, Nikhil Chavan-Dafle, and Alberto Rodriguez.

More than a Million Ways to be Pushed. A High-Fidelity Experimental
Dataset of Plannar Pushing IROS’16, by Peter Yu, Maria Bauza, Nima

Fazeli, and Alberto Rodriguez. Finalist Best Paper Award IROS’16

Empirical Evaluation of Common Contact Models for Planar Impact
ICRA’17, by Nima Fazeli, Elliott Donlon, Evan Drumwright, and Alberto

Rodriguez.

Mechanics Modeling

Planar Pushing

Planar Impacts

A Probabilistic Data-Driven Model for Planar Pushing ICRA’17, by Maria
Bauza and Alberto Rodriguez.

- Explore GPs for modeling contact models.
- Improve analytical models after ~100 datapoints.
- Explicitly capture uncertainty.

Learning Data-Efficient Rigid-Body Contact Models: Case Study of Planar
Impact CoRL’17, by Nima Fazeli, Samuel Zapolsky, Evan Drumwright, and
Alberto Rodriguez.

- Explore GPs for reinforce contact models.
- Efficient learning of hybrid analytical + data-driven models.
- 15-20 data points is enough to improve analytical models.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

PD
F

Es
tim

at
e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

PD
F

Es
tim

at
e

(a) (b)

Figure 7: The estimated probability density function of the `2 norm error in predicted post contact
velocity for 450 data samples used to train the models. a) Class I, b) Class II.

0 50 100 150 200 250 300 350 400 450 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 8: The `2 norm error in predicted post contact velocity for the models studied vs. the number
of data samples used to train models.

are more data-efficient. In particular, here we were able to reduce a 10-D space to 5-D. We further
show significant improvements in model prediction when we allow models do deviate slightly from
the requirements of rigid contact, i.e. using instantaneous wrench instead of linear impulse.

In this study we considered two classes of models, the purely data-driven (weak priors), and the
data reinforced models (with strong priors). The challenge with using a purely data-driven model is
the potentially poor or infeasible predictions made by these models before being trained on enough
data. In contrast, augmenting analytical contact models with data allows for feasible predictions
with adjustments made as more data is collected. With no data, the predictions rely on the prior
generated by the underlying analytical models with no adjustment, which will be feasible but may
be inaccurate. Our results suggest that these two formulations saturate at similar performances for
this experimental setup, and the data reinforced models may be preferred due to the strong priors
they provide.

The present study focuses on the impact of a single object, and learns a contact model suitable for the
predictions of outcomes. Two interesting questions to ask are: how well does the model learned for
this object work in making predictions for other objects of different shapes and physical properties?
Is it possible to use this model as a prior and learn a correcting model with far fewer samples?

8

Dynamics Modeling

Planar Pushing
Augmenting Physical Simulators with Stochastic Neural Networks: Case
study of Planar Pushing and Bouncing IROS’18, by Anurag Ajay, Jianjun
Wu, Nima Fazeli, Maria Bauza, Leslie Kaelbling, Joshua Tenenbaum and
Alberto Rodriguez, Best Cognitive Paper Award IROS’18

- Explore Stochastic Recursive Neural Networks to reinforce dynamics
models.
- Outperform analytical and purely data-driven models.
- Explicitly capture uncertainty.

!"

!"#$

Physics
Engine

!"

!"#$

Learned

Physics
Engine

!"

!"#$

Learned

Physics
Engine

!"

!"#$

Learned

Physics
Engine

!"

%(!"#$)

Learned

(a) (b) (c) (d) (e)

!̅"#$!̅"#$!̅"#$

Fig. 2: Model classes: (a) physics-based analytical models; (b) data-driven models; (c) data-augmented residual models; (d) recurrent
data-augmented residual models; and (e) stochastic recurrent data-augmented residual models.

models work well close to their assumptions and in structured
environments, but their performance degrades as we move
away from their nominal working conditions. Further, finding
tractable models for complex tasks is difficult and requires
extensive domain specific expertise. For the rest of this paper,
let fp : S ⇥A ! S represent the analytical model.

B. Data-Driven Models

Rather than being hand engineered, these models are
learned using data collected from the real world. They can be
either parametric (e.g., neural networks) or non-parametric
(e.g., Gaussian processes). For the purpose of discussion, let’s
assume a parametric model represented by f✓ : S ⇥A ! S,
where ✓ is the parameter vector. The model is learned using
data collected from the real world; for example, the robot
may take actions according to a fixed pushing policy and
collect (s, a, s0) tuples that represent the states of the object
being pushed and the motion of the pusher. After collecting
data {(st, at, st+1)}T�1

t=0 , we solve the following optimization
problem to obtain optimal parameters for the model:

✓⇤ = argmin
✓

T�1X

t=0

kf✓(st, at)� st+1k22 + �k✓k22 (1)

where � is a constant for regularization. After obtaining ✓⇤,
we use f✓⇤ as the representation of our motion model. While
this approach requires no hand-engineering and directly learns
from the data without making any assumptions, it does not
make use of any domain knowledge, and consequently may
require many examples to learn.

C. Data-Augmented Residual Models

We leverage advantages of both model classes and develop
a new hybrid class of models, which we call data-augmented

residual models, by combining a physics engine with a
data-driven model. In this modeling framework, the data-
driven part of the model takes the current state-action pairs
and the predictions made by the physics engine as input,
and effectively learns the discrepancy between analytical
model predictions and real-world data (i.e. the residual). If fr
represents the data-augmented residual model, fp represents
its physics engine, and f✓ represents its residual component,
we have fr(s, a) = f✓(fp(s, a), s, a) ⇡ s0. Intuitively, the

residual model refines the physics engine’s guess using the
current state and action.
D. Recurrent Data-Augmented Residual Models

Planning and control require long-horizon predictions of
future states of the world, given actions taken by an agent
using dynamic models. No matter how accurate the model is,
it will have some error which will compound over a sequence
of time steps. Moreover, the data-driven and data-augmented
models are trained using data from real world trajectories.
While simulating the future, these dynamics models will
recursively use their own prediction as input for the next
time step. As there will be error in their predictions at
each time step, the input data given during simulation phase
will have a different distribution than the input data during
the training phase. This creates data distribution mismatch
between training and test (or simulation) phases for both data-
augmented residual models and purely data-driven models.

To address this problem, we propose to use a recurrent
data-augmented residual model, trained to predict the entire
trajectory based on an initial state and an action sequence.
The recurrent data-augmented residual model consists of two
components: a physics engine and a recurrent data-augmented
residual model. The physics engine takes in the initial state
and a sequence of actions at every time step; it generates
an entire trajectory which serves as a good initial guess for
the recurrent residual model. The residual model takes the
initial state, a sequence of actions, and the trajectory predicted
by the physics engine; it then predicts the next state. If fR

r

represents the data-augmented recurrent residual model, fp
represents its physics engine, and fR

✓ represents its residual
component, we have

fR
r (s̄t, ŝt, at) = fR

✓ (fp(s̄t, at), ŝt, at) = ŝt+1 ⇡ st+1, (2)
fp(s̄t, at) = s̄t+1, s̄0 = ŝ0 = s0, (3)

where (ŝt)
T�1
t=0 is the predicted trajectory. The model is

fully differentiable and can be trained by minimizing
min✓

PT�1
t=0 kŝt � stk22 + �k✓k22.

E. Stochastic Recurrent Data-Augmented Residual Models

No model is perfect, therefore the ability to provide a
measure of uncertainty over possible future states is an

Control

Planar Pushing
Combining Physical Simulators and Object Based Networksor Control
ICRA’19, by Anurag Ajay, Maria Bauza, Jianjun Wu, Nima Fazeli, Joshua
Tenenbaum, Alberto Rodriguez, and Leslie Kaelbling (under review)

Combining Physical Simulators and Object-Based Networks for Control

Anurag Ajay1, Maria Bauza2, Jiajun Wu1, Nima Fazeli2,
Joshua B. Tenenbaum1, Alberto Rodriguez2, Leslie P. Kaelbling1

Abstract— Physics engines play an important role in robot

planning and control; however, many real-world control prob-

lems involve complex contact dynamics that cannot be char-

acterized analytically. Most physics engines therefore employ

approximations that lead to a loss in precision. In this paper,

we propose a hybrid dynamics model, simulator-augmented

interaction networks (SAIN), combining a physics engine

with an object-based neural network for dynamics modeling.

Compared with existing models that are purely analytical or

purely data-driven, our hybrid model captures the dynamics of

interacting objects in a more accurate and data-efficient manner.

Experiments in simulation and on a real robot both suggest

that it also leads to better performance when used in complex

control tasks. Finally, we show that our model generalizes to

novel environments with varying object shapes and materials.

I. INTRODUCTION

Physics engines are important for planning and control
in robotics. To plan for a task, a robot may use a physics
engine to simulate the effects of different actions on the
environment and then select a sequence of them to reach a
desired goal state. The utility of the resulting action sequence
depends on the accuracy of the physics engine’s predictions,
so a high-fidelity physics engine is an important component
in robot planning. Most physics engines used in robotics
(such as Mujoco [1] and Bullet [2]) use approximate contact
models, and recent studies [3], [4], [5] have demonstrated
discrepancies between their predictions and real-world data.
These mismatches make contact-rich tasks hard to solve using
these physics engines.

One way to increase the robustness of controllers and
policies resulting from physics engines is to add perturbations
to parameters that are difficult to estimate accurately (e.g.,
frictional variation as a function of position [4]). This
approach leads to an ensemble of simulated predictions that
covers a range of possible outcomes. Using the ensemble
allows to take more conservative actions and increases
robustness, but does not address the limitation of using
learned, approximate models [6], [7].

To correct for model errors due to approximations, we
learn a residual model between real-world measurements and
a physics engine’s predictions. Combining the physics engine
and residual model yields a data-augmented physics engine.
This strategy is effective because learning a residual error of
a reasonable approximation (here from a physics engine) is

1Anurag Ajay, Jiajun Wu, Joshua B. Tenenbaum, and Leslie P. Kaelbling
are with the Computer Science and Artificial Intelligence Laboratory (CSAIL)
at Massachusetts Institute of Technology, Cambridge, MA, USA

2Maria Bauza, Nima Fazeli, and Alberto Rodriguez are with the Depart-
ment of Mechanical Engineering at Massachusetts Institute of Technology,
Cambridge, MA, USA

xx x

Fig. 1: Top: the robot wants to push the second disk to a goal
position by pushing on the first disk. Bottom: three snapshots within
a successful push (target marked as X). The robot learns to first
push the first disk to the right and then use it to push the second
disk to the target position.

easier and more sample efficient than learning from scratch.
This approach has been shown to be more data efficient, have
better generalization capabilities, and outperform its purely
analytical or data-driven counterparts [8], [9], [10], [11].

Most residual-based approaches assume a fixed number of
objects in the world states. This means they cannot be applied
to states with a varied number of objects or generalize what
they learn for one object to other similar ones. This problem
has been addressed by approaches that use graph-structured
network models, such as interaction networks [12] and
neural physics engines [13]. These methods are effective at
generalizing over objects, modeling interactions, and handling
variable numbers of objects. However, as they are purely data-
driven, in practice they require a large number of training
examples to arrive at a good model.

In this paper, we propose simulator-augmented interaction
networks (SAIN), incorporating interaction networks into a
physical simulator for complex, real-world control problems.
Specifically, we show:

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2019 International Conference on Robotics
and Automation (ICRA). Received September 15, 2018.

Control

Planar Pushing
Combining Physical Simulators and Object Based Networksor Control
ICRA’19, by Anurag Ajay, Maria Bauza, Jianjun Wu, Nima Fazeli, Joshua
Tenenbaum, Alberto Rodriguez, and Leslie Kaelbling (under review)

- SAIN: Simulator Augmented Interaction Networks.
- More efficient learning and generalization by imposing an object-
based representation.

Combining Physical Simulators and Object-Based Networks for Control

Anurag Ajay1, Maria Bauza2, Jiajun Wu1, Nima Fazeli2,
Joshua B. Tenenbaum1, Alberto Rodriguez2, Leslie P. Kaelbling1

Abstract— Physics engines play an important role in robot

planning and control; however, many real-world control prob-

lems involve complex contact dynamics that cannot be char-

acterized analytically. Most physics engines therefore employ

approximations that lead to a loss in precision. In this paper,

we propose a hybrid dynamics model, simulator-augmented

interaction networks (SAIN), combining a physics engine

with an object-based neural network for dynamics modeling.

Compared with existing models that are purely analytical or

purely data-driven, our hybrid model captures the dynamics of

interacting objects in a more accurate and data-efficient manner.

Experiments in simulation and on a real robot both suggest

that it also leads to better performance when used in complex

control tasks. Finally, we show that our model generalizes to

novel environments with varying object shapes and materials.

I. INTRODUCTION

Physics engines are important for planning and control
in robotics. To plan for a task, a robot may use a physics
engine to simulate the effects of different actions on the
environment and then select a sequence of them to reach a
desired goal state. The utility of the resulting action sequence
depends on the accuracy of the physics engine’s predictions,
so a high-fidelity physics engine is an important component
in robot planning. Most physics engines used in robotics
(such as Mujoco [1] and Bullet [2]) use approximate contact
models, and recent studies [3], [4], [5] have demonstrated
discrepancies between their predictions and real-world data.
These mismatches make contact-rich tasks hard to solve using
these physics engines.

One way to increase the robustness of controllers and
policies resulting from physics engines is to add perturbations
to parameters that are difficult to estimate accurately (e.g.,
frictional variation as a function of position [4]). This
approach leads to an ensemble of simulated predictions that
covers a range of possible outcomes. Using the ensemble
allows to take more conservative actions and increases
robustness, but does not address the limitation of using
learned, approximate models [6], [7].

To correct for model errors due to approximations, we
learn a residual model between real-world measurements and
a physics engine’s predictions. Combining the physics engine
and residual model yields a data-augmented physics engine.
This strategy is effective because learning a residual error of
a reasonable approximation (here from a physics engine) is

1Anurag Ajay, Jiajun Wu, Joshua B. Tenenbaum, and Leslie P. Kaelbling
are with the Computer Science and Artificial Intelligence Laboratory (CSAIL)
at Massachusetts Institute of Technology, Cambridge, MA, USA

2Maria Bauza, Nima Fazeli, and Alberto Rodriguez are with the Depart-
ment of Mechanical Engineering at Massachusetts Institute of Technology,
Cambridge, MA, USA

xx x

Fig. 1: Top: the robot wants to push the second disk to a goal
position by pushing on the first disk. Bottom: three snapshots within
a successful push (target marked as X). The robot learns to first
push the first disk to the right and then use it to push the second
disk to the target position.

easier and more sample efficient than learning from scratch.
This approach has been shown to be more data efficient, have
better generalization capabilities, and outperform its purely
analytical or data-driven counterparts [8], [9], [10], [11].

Most residual-based approaches assume a fixed number of
objects in the world states. This means they cannot be applied
to states with a varied number of objects or generalize what
they learn for one object to other similar ones. This problem
has been addressed by approaches that use graph-structured
network models, such as interaction networks [12] and
neural physics engines [13]. These methods are effective at
generalizing over objects, modeling interactions, and handling
variable numbers of objects. However, as they are purely data-
driven, in practice they require a large number of training
examples to arrive at a good model.

In this paper, we propose simulator-augmented interaction
networks (SAIN), incorporating interaction networks into a
physical simulator for complex, real-world control problems.
Specifically, we show:

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2019 International Conference on Robotics
and Automation (ICRA). Received September 15, 2018.

Purely analytical Data-reinforced

Inference and Control

Science Robotics Manuscript Template Page 14 of 18

Fig. 1: Robot Setup. (A) Physical setup consisting of the robot, Jenga tower, Intel RealSense
D415 camera, and ATI Gamma Force/Torque sensor (mounted at the wrist). (B) The machine
intelligence architecture with the learned physics model.

Table 1: Summary statistics for Exploration, Learned Physics, and Humans. Table
comparing the performance of the robot using the exploration strategy and the learned model.

Block
Position

Action
Exploration Learned Humans

Attempts Successes Attempts Successes Attempts Successes

All

Push 403 172 (42.7%) 203 93 (45.8%) 210 100 (47.6%)

Extract 172 97 (56.4%) 93 82 (88.2%) 100 96 (96.0%)

Place 97 85 (87.6%) 82 72 (87.8%) 96 93 (96.9%)

Side

Push 288 122 (42.4%) 133 69 (51.9%) 111 51 (45.9%)

Extract 122 52 (42.6%) 69 54 (78.3%) 51 50 (96.8%)

Place 52 44 (84.6%) 54 49 (90.7%) 50 50 (100%)

Middle

Push 115 50 (43.5%) 70 33 (47.1%) 99 49 (49.5%)

Extract 50 45 (90.0%) 33 28 (84.8%) 49 46 (93.9%)

Place 45 41 (91.1%) 28 23 (82.1%) 46 43 (93.5%)

Game of Jenga
See, Feel, Act: Learning Complex Manipulation Skills with Causal Structure and
Multi-Sensory Fusion Science’19, by Nima Fazeli, Jiajun Wu, Miquel Oller, Zi Wu,
Joshua Tenenbaum, and Alberto Rodriguez (under review)

Inference and Control
Game of Jenga
See, Feel, Act: Learning Complex Manipulation Skills with Causal Structure and
Multi-Sensory Fusion Science’19, by Nima Fazeli, Jiajun Wu, Miquel Oller, Zi Wu,
Joshua Tenenbaum, and Alberto Rodriguez (under review)

Inference and Control

Science Robotics Manuscript Template Page 16 of 18

Fig. 4: Learned Intuitive Physics. (A) Visualization of the predicted normal and tangential
forces predicted by the BNN given the current measurements (in the normal and tangential
directions). The friction coefficient between the finger material (PLA) and wood is between 0.35
and 0.5, here we use 0.42 as an approximation. (B) The normal force applied to the tower as a
function of the height of the tower. We note the trend of decrease in normal force as the height
increases, indicating that blocks require less effort to extract. The robot is able to leverage this
intuition to regulate the amount of force it applies to the tower, mitigating failures and
differentiating between stuck blocks and moveable blocks better.

 (A) (B)

Fig. 5: Inference using the learned representation. Evolution of the beliefs of the robot as it
interacts with the tower. (A) For a block that is stuck we see no change in the configuration and a
sharp increase in force, leading the robot to believe that it was at first not touching a block then

Game of Jenga
See, Feel, Act: Learning Complex Manipulation Skills with Causal Structure and
Multi-Sensory Fusion Science’19, by Nima Fazeli, Jiajun Wu, Miquel Oller, Zi Wu,
Joshua Tenenbaum, and Alberto Rodriguez (under review)

MCubeLab

Thanks!

