# NRI: FND: Action-perception loops over 5G millimeter wave wireless for cooperative manipulation

Ludovic Righetti, Siddharth Garg, Elza Erkip and Sundeep Rangan Tandon School of Engineering, New York University

## Motivation

Untethered robots require an **increasing access to computation** while available on-board computing power remains limited due to robot size/weight constraints and **power autonomy** requirements

=> Leverage unprecedented access to high bandwidth and low latency communication offered by fifth generation wireless communication to **offload real-time action-perception loops to the network edge** 

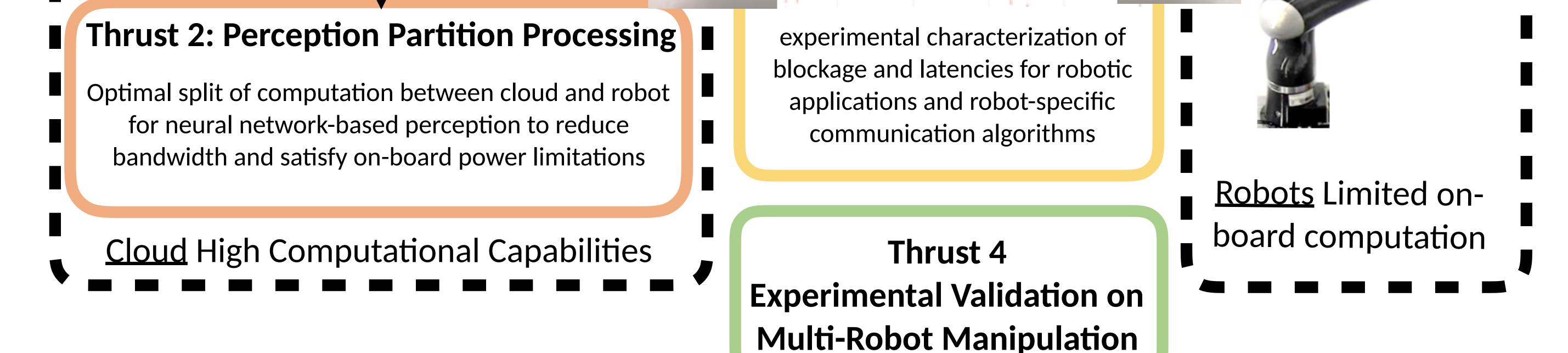
## **Scientific Objectives**

Novel perception, control and planning algorithms for **reliable remote real-time computation of action-perception loops** using 5G mmWave wireless communication.

## Thrust 1: Control and Online Motion Optimization over a mmWave Link

split control between robot and network edge for reliable performance under communication limitations and constrained on-board computations

## Challenges


**Communication reliability** mmWave signals are vulnerable to blockage from common materials

INY

**Scalability** Bandwidth/latency requirements push the limits of wireless communication

**Performance** sensitivity of closed-loop control to intermittent communication loss /delays

Thrust 3: mmWave communication for robotics



#### **Broader Impact**

Lowering barriers to entry for industry/academia for 5G-enabled robotics

#### **Dissemination, technology transfer and industrial cooperation** via NYU WIRELESS

**Curriculum development** for graduate and undergraduate students including projects at the intersection of wireless communication and robotics with state of the art platforms

#### 2020 National Robotics Initiative (NRI) Principal Investigators' Meeting

#### FEBRUARY 27 - 28, 2020 | ARLINGTON, VIRGINIA

