ActionWebs and Air Transportation

Hamsa Balakrishnan and Claire Tomlin

Massachusetts Institute of Technology

CPS PI Meeting August 2, 2011

Next Generation Air Transportation Systems

- Air transport is a key factor in global travel and commerce
 - 600M passengers/year in the US
 - 35,000+ commercial flights/day in the US
 - US traffic expected to grow ~2-3x by 2025 (rel. to 2004)
- NextGen is the "Next Generation Air Transportation System"
- Objectives:
 - Expanding capacity
 - Ensuring safety
 - Protecting the environment
 - Retaining US leadership in global aviation
 - Ensuring national defense and securing the nation

[www.jpdo.aero]

Problem: Taxi-out Fuel Burn and Emissions

- Congestion leads to increased taxi times, fuel burn and emissions
- Annually, at major airports in the United States
 - Over 32M minutes taxi-out delays (over unimpeded times)
 - Over 13M minutes taxi-in delays (over unimpeded times)
 - 600M gallons of jet fuel expended in taxi-out process
 - Taxiing aircraft contribute to noise and surface emissions,
 e.g. CO₂, NOx, SOx, CO, HC, and Particulate Matter
 - 6M metric tons of CO₂ emissions due to taxi-out processes

[Joint work with Ioannis Simaiakis, Harshad Khadilkar, Tom Reynolds and John Hansman]

Main Culprit: Surface Congestion

• Major airports are frequently severely congested, resulting in large taxi-out delays and inefficient operations

Simaiakis and Balakrishnan, *Transp. Res. Record: Jour. of the Transp. Res. Board*, 2010 (Confirms Pujet, Delcaire and Feron, BOS 1999).

Our Solution: Pushback Rate Control

 Aircraft pushback from gates, start their engines, and then taxi until they takeoff

- Want to control pushbacks to keep N close to target value, $N_{\rm ctrl}$
- Challenges:
 - How do we choose $N_{\rm ctrl}$?
 - How do we implement control strategy?
 - How do we interface with the human controllers?

Choosing N_{ctrl}

- Departure runway throughput saturates when number of aircraft pushed back (denoted *N*) exceeds a certain value
- Estimation of $N_{\rm ctrl}$ and departure capacity under different conditions using historical data

Implementing Control Strategy

- On-off control does not work
 - Air traffic controllers are humans, not automata
 - Rather than release an aircraft every time that a flight takes off, controllers prefer a rate at which to let aircraft pushback from their gates
 - Rate is updated periodically

Interfacing with Human Controllers

- Suggest pushback rates using color-coded cards
- No verbal communications

BOS Field Tests in 2010

- Aug 23 Sept 24, 2010
- 4PM-8PM departure push
- 247 flights held at gate
- Average gate-hold: 4.3 min
- 13-16 tons (4,000-4,700 US gal) reduction in fuel burn
- 44-60 kg decrease in fuel burn / gate-held flight
- 43-51 tons of CO₂ emissions reduction
- Fair distribution of benefits among airlines

Number of Gate-holds	Average gate-hold (min)	Total taxi time savings (min)
63	4.06	257
34	3.24	114
8	4.75	38
45	8.33	295
19	2.21	42
11	2.09	23
11	2.18	24
56	3.70	210
247	4.35 min	1003 min (16.7 hrs)

[Supported by the FAA]

Gate-Holds from a Sample Demo Period

- Maintained runway utilization during metering: 3 min of "dry runway" in > 35 hours of active rate control of pushbacks
- Simulations also show that gate-hold times translate to taxi-out time reduction to first order
- Second-order benefits due to fewer acceleration events [Simaiakis et al., USA/Europe Air Traffic Management R&D Seminar 2011]

Playback of Surface Surveillance Data

Current Status

- Promising results from 2010 demo
- Featured in the FAA's NextGen Implementation Plan (March 2011)
 - "...meant for business-as-usual situations, too."
 - "...meant to be a relatively simple, low-cost program for airports..."
- Ongoing follow-up tests at BOS
 - Focus on convective weather
 - Control strategy refinement
 - Investigate deployment

FAA's
NextGen
IMPLEMENTATION PLAN
March 2011

Need for Optimization under Uncertainty

[Visualization courtesy MIT Lincoln Laboratory]

Identifying Robust Routes in Convective Weather

- Given a deterministic weather forecasts and candidate routes, find probabilistic forecasts of routes likely to remain clear of weather
- Simulations with real weather scenarios show that 13% more routes open up, and error rates – i.e., a suggested alternate route is blocked – are low (<5%)
- Next steps: Prototype implementation (in collaboration with Lincoln Lab) to be field-tested in Chicago terminal area

[Pfeil and Balakrishnan. IEEE Conference on Decision and Control 2010 Pfeil and Balakrishnan. *Transportation Science*. In press]

Optimization of Runway Configuration Changes

- Runway configuration (which runways are used for which operations) is a key driver of airport capacity
- Wind direction, speed determine feasible configurations
 Can necessitate configuration switches
- Problem: How do we optimally coordinate arrival flows during configuration switches?
 JFK runway configuration switch during
- Approach:
 - Model changing constraints by different "graph modes"
 - Weather forecast determines graph mode

 Mixed Integer Linear Program for aircraft control and separation

[Maryam Kamgarpour, Wei Zhang and Claire Tomlin]

[Kamgarpour, Zhang, Tomlin, Proceedings of AIAA GNC 2011]

Hierarchical, Decentralized Trajectory Planning

- Hierarchical Decentralized Flight 4D Trajectory Planning
 - Based on dual decomposition
 - Minimizes individual decentralized costs subject to centralized regulation rules
 - Incorporates user preferences
 - Guarantees safety
 - Low complexity: allows the legacy system to transform gradually

[Wei Zhang, Maryam Kamgarpour and Claire Tomlin]

[Zhang, Kamgarpour, Sun, and Tomlin, to appear in Proceedings of the IEEE]

NextGen CPS Challenges

ActionWebs CPS Themes

- Balakrishnan, Culler, Lee, Sastry and Tomlin (PI)
- Foundations
 - Model identification and estimation
 - Architectures and abstractions for CPS
 - Augmenting physics-based models with real data
 - Interplay between control and sensing
 - Algorithms for distributed and decentralized optimization
 - Hierarchical optimization vs. blending multiple objectives
 - Verification and validation of control protocols
- Components, Run-time Substrates and Systems
 - Energy-efficient, high-productivity buildings
 - Energy-efficient air transportation systems

Summary

- Next Generation Air Transportation System (NextGen) presents many important challenges that require the development and use of CPS methodologies
- ActionWebs addresses these challenges by developing necessary CPS methodologies
- Focus on two "grand-challenge" test-beds:
 - Energy-efficient, high-productivity buildings
 - Energy-efficient air transportation systems
- Solutions have the potential to increase NextGen system efficiency (reduce delays), robustness (reduce impact of weather disruptions) and energy efficiency (reduce fuel burn), and decrease environmental impact