FRR: CAREER: Active Bayesian Inference for Collaborative Robot Mapping

Nikolay Atanasov, ECE, University of California San Diego

Intellectual Merit Plan:

- **Objective:** establish theory of active Bayesian inference and apply it to collaborative exploration and active mapping problems in robotics
- Task A: active Bayesian inference formulation as an optimal control problem for multi-robot sensing policy synthesis
- Task B: application of active Bayesian inference techniques to collaborative robot mapping

Education and Broader Impacts Plan:

- Demonstrate exploration and active mapping of unknown environments using a team of real ground and aerial robots
- Fundamental autonomy techniques developed in this project will impact various applications of mobile robots
- Develop **Robot Proving Grounds**, a suite of open-source implementations, examples, and tutorials of core robotics algorithms for localization, mapping, motion planning, and control, unified in an easy-to-use simulation environment
- Outreach and research activities for underrepresented K12 and undergrad students using RPG platform and support from UCSD outreach programs

Task A: Active Bayesian Inference

- Given **n** robots and planning horizon of **T** steps, choose control Log-odds mapping generalization to multiple classes with range and semantic policies to minimize uncertainty about a target system (e.g., observations; C++ implementation using an Octree data structure robot locations, map, any process of interest)
- Formulate a controlled variational inference problem and minimize an uncertainty measure of the posterior distribution over the space of sensing policies
- New nonlinear Gaussian filtering formulation allows efficient mean and covariance propagation with very general errorbased motion and observation models
- Active SLAM over continuous trajectory and control: a covariance-feedback approach (ACC'22)
- Journal paper on active information acquisition in preparation

2022 NRI & FRR Principal Investigators' Meeting April 19-21, 2022

Task B: New directional formulation for shape and surface modeling

Task B: Gradient-based optimization for active semantic mapping

- Closed-form lower bound on Shannon mutual information between multi-class Octree map and range-category observations using run-length encoding
- Allows rapid evaluation of many potential robot trajectories for autonomous exploration and active semantic mapping
- Differentiable formulation using Mutual information interpolation on a predefined grid of sensor views
- Semantic octree mapping and Shannon mutual information computation for robot exploration (**T-RO** (submitted))
- Active mapping via gradient ascent optimization of Shannon mutual information over continuous SE(3) trajectories (**IROS'22** (submitted))

Task A: Distributed Bayesian Inference

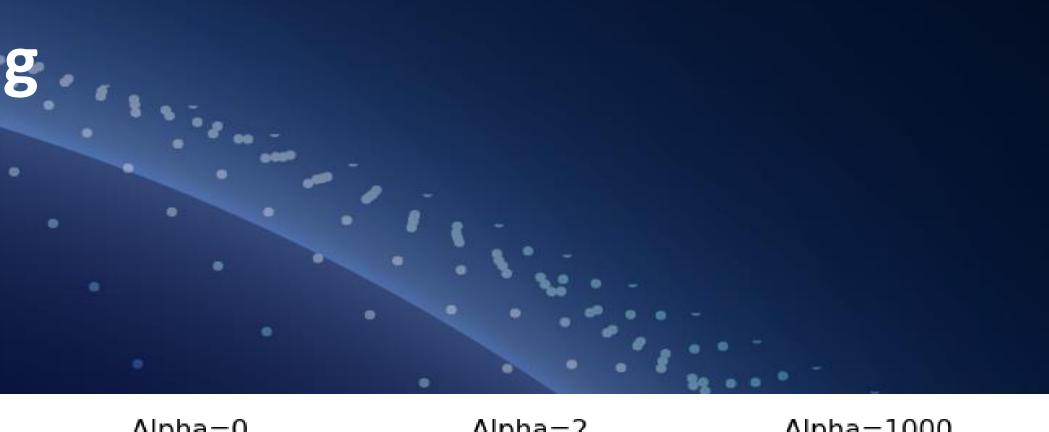
Cooperative estimation in a sensor network

Developed a distributed Bayesian inference algorithm for continuous probability densities over time-varying directed graphs (L-CSS'22 (submitted))

Key ideas: **stochastic mirror descent** allows sequential/online variational inference, KL divergence regularization of neighbor priors to obtain a distributed formulation, proof of convergence for B-connected time-varying graphs using large-deviations analysis

Signed directional distance function (SDDF) $h: \mathbb{R}^n \times S^{n-1} \mapsto \mathbb{R}$ of set $\mathcal{O} \subset \mathbb{R}^n$ measures signed distance from point $p \in \mathbb{R}^n$ to set boundary $\partial \mathcal{O}$ in direction η $\in S^{n-1}$: $h(\mathbf{p}, \mathbf{\eta}) = d_{\mathbf{\eta}}(\mathbf{p}, \partial \mathcal{O}) \coloneqq \min \{ d \in \mathbb{R} \mid \mathbf{p} + d\mathbf{\eta} \in \partial \mathcal{O} \}$

SDDF gradient with respect to p projected to η satisfies: $\nabla_p h(p, \eta)^\top \eta = -1$


SDDF structural property: a function h is a valid SDDF if and only if $h(p, \eta)$ $= f(\mathbf{P}\mathbf{R}_n\mathbf{p}, \mathbf{\eta}) - \mathbf{p}^{\top}\mathbf{\eta}$ for some $f: \mathbb{R}^{n-1} \times S^{n-1} \mapsto \mathbb{R}, \mathbf{P} = [\mathbf{I} \ \mathbf{0}], \mathbf{R}_n \in SO(3)$ **Major contribution**: neural network model for SDDF representation that

guarantees valid SDDF by construction!

Deep signed directional distance function for shape representation and view synthesis (ECCV'22 (submitted))

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

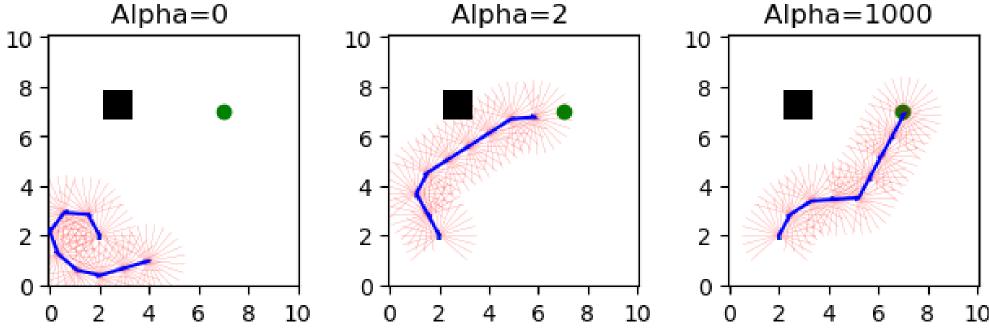


Figure: Active lidar localization in an occupancy grid map, trading off uncertainty minimization and distance to the goal

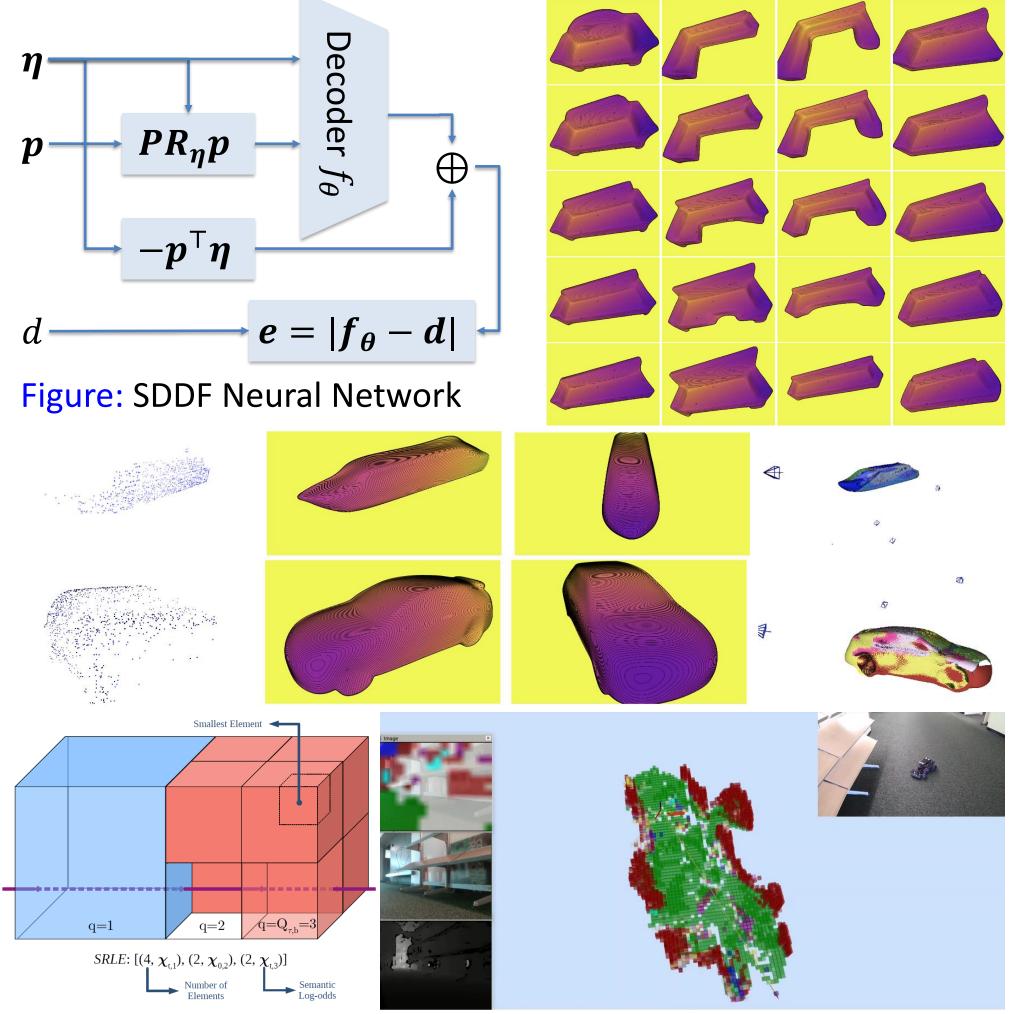


Figure: Semantic runlength encoding of multi-class log-odds in octree data structure

Figure: Active semantic octree mapping using closed-form approximation of mutual information between octree map and range-category measurements

Award ID#: 2045945 https://existentialrobotics.org