
• Key Insights 
We model the energy readings as a three-way tensor and 
decompose the energy tensor with CP decomposition. 

• Variance in energy use or error in sensor readings. 

• Uncertainty in parameter estimation. 

• Uncertainty in data reconstruction. 

̂e = < ĥ, ̂a, ̂s > ≠ e* = < h*, a*, s* >

eobs ≈ < ĥ, ̂a, ̂s >

e* = < h*, a*, s* >
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Active Collaborative Sensing for Energy Breakdown

Motivation

Active Collaborative Sensing

Reproducibility Our entire codebase, baselines, analysis and experiments can be 
found on Github, https://github.com/yilingjia/ActSense.

• Energy breakdown, i.e, providing per-appliance energy 
consumption, can increases residents’ awareness and 
save up to 15% energy.
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• Collaborative Sensing[1, 2]: 
reconstruct the sensor 
data of one building
based on sensor data collected in other buildings.
• common and repeated patterns of buildings.
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Scalable Energy Breakdown Across Regions[2]

• Problem: Very few homes in the world have been 
installed sub-meters; and the cost of retrofitting a home 
eats into the funds available for energy saving retrofits.

Active Sensing: strategically deploy sensing hardware 
to maximize the reconstruction accuracy while 
minimizing deployment cost.

• Quantifying Uncertainty 
• Uncertainty in data reconstruction comes from the 

uncertainty in parameter estimation. 

• Combine uncertainties of historical and future 
months to select the <home, appliance> pairs.

Empirical Evaluation

With high probability, at each time t, the upper bound 
of the estimation error generated with ActSense, 
i.e.,                , and the one generated with any other 
selection, i.e.,                , satisfy:                               

UB(EA(t))
UB(EO(t)) UB(EA(t)) ≤ UB(EO(t)) .

• We use the public Dataport dataset. 
• Monthly energy data collected in Austin, U.S..

Mean RMSE performance Relative improvement 
compared to random selection
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Selection Ratio of Appliances

Performance vs. Number of selections in each month.

• ActSense performs favorably compared to the baselines, 
and achieves the highest improvement.

• ActSense has the advantage in minimizing the cost of 
deployment for improving energy breakdown quality.

(x, y) = argmaxx∈[M],y∈[N]
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ρl ⋅ Uncertainty(i, j, l)

Weight function to control the contribution

• Analyzing Convergence
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• Energy data is 
continuously 
generated and 
collected. 

• Once the sensor is 
installed, the readings 
are always available 
in the future.

• Active Sensor Deployment
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