Active Collaborative Sensing for Energy Breakdown

INIVERSITY RGINIA

Yiling Jia, Nipun Batra, Hongning Wang, Kamin Whitehouse University of Virginia, IIT Gandhinagar

6.3 kWh

0.9 kWh

0

< home x_1 , appliance y_1 >

< home x_2 , appliance y_2 >

months

Appliance readings

 $e_{x_1,y_1,2}$ $e_{x_1,y_1,3}$

Motivation

- Energy breakdown, i.e., providing per-appliance energy consumption, can increases residents' awareness and save up to 15% energy. Total energy consumption 1.5 kWh
- Collaborative Sensing^[1, 2]: ≣\$ reconstruct the sensor data of one building Provide per-appliance consumption based on sensor data collected in other buildings.

Quantifying Uncertainty

Uncertainty in data reconstruction comes from the uncertainty in parameter estimation.

Uncertainty of latent appliance factor estimation

$$\hat{\mathbf{e}}_{ijk} - \mathbf{e}_{ijk}^* | \leq \alpha_{h_i}^t | |\hat{\mathbf{a}}_j^t \circ \hat{\mathbf{s}}_k^t | |_{(\mathbf{A}_i^t)^{-1}} + \alpha_{a_j}^t | |\hat{\mathbf{h}}_i^t \circ \hat{\mathbf{s}}_k^t | |_{(\mathbf{C}_j^t)^{-1}} + const$$

Uncertainty of latent home factor estimation

Uncertainty(*i*, *j*, *t*)

Combine uncertainties of historical and future months to select the <home, appliance> pairs.

$$(x, y) = \operatorname{argmax}_{x \in [M], y \in [N]} \sum_{l=t-p}^{t+p} \rho_l \cdot Uncertainty(i, j, l)$$

Weight function to control the contribution

Problem: Very few homes in the world have been installed sub-meters; and the cost of retrofitting a home eats into the funds available for energy saving retrofits.

Active Sensing: strategically deploy sensing hardware to maximize the reconstruction accuracy while minimizing deployment cost.

Active Collaborative Sensing

Μ

homes

appliances

- **Active Sensor Deployment**
 - Energy data is continuously generated and collected.
 - Once the sensor is installed, the readings are always available in the future.

Key Insights

Analyzing Convergence

With high probability, at each time t, the upper bound of the estimation error generated with **ActSense**, i.e., $UB(E_A(t))$, and the one generated with any other selection, i.e., $UB(E_O(t))$, satisfy: $UB(E_A(t)) \leq UB(E_O(t))$.

Empirical Evaluation

- We use the public **Dataport** dataset.
- Monthly energy data collected in Austin, U.S.

Mean RMSE performance

Relative improvement compared to random selection

Ratio (%) is better mproved Higher 35.06% ActSense OBC Jan Feb Mar Apr Jun Jul Jul Sep Oct Nov Nov

Month

Selection Ratio of Appliances

We model the energy readings as a three-way tensor and decompose the energy tensor with CP decomposition.

Variance in energy use or error in sensor readings. true energy reading

Aggregate readings

(from monthly bills)

 $e^{obs} = e^*$ + noise

observed energy reading

- Uncertainty in parameter estimation. $e^{obs} \approx \langle \hat{h}, \hat{a}, \hat{s} \rangle$ estimated decomposition
 - $e^* = \langle h^*, a^*, s^* \rangle$ true decomposition
- Uncertainty in data reconstruction.

 $\hat{e} = \langle \hat{h}, \hat{a}, \hat{s} \rangle \neq e^* = \langle h^*, a^*, s^* \rangle$

Reference

[1]Batra, N., Wang, H., Singh, A., & Whitehouse, K. Matrix factorisation for scalable energy breakdown AAAI 2017.

[2] Batra, N., Jia, Y., Wang, H., & Whitehouse, K. Transferring Decomposed Tensors for Scalable Energy Breakdown Across Regions. AAAI 2018.

- Washing Machine HVAC Dishwasher Furnace **Fridge** Microwave
- ActSense performs favorably compared to the baselines, and achieves the highest improvement.

Performance vs. Number of selections in each month.

ActSense has the advantage in minimizing the cost of deployment for improving energy breakdown quality.

Acknowledgements

This work is based upon work supported by the NSF under grant CNS-1646501, IIS-1553568, IIS-1718216.

Reproducibility Our entire codebase, baselines, analysis and experiments can be found on Github, https://github.com/yilingjia/ActSense.