

CPS Research & Development at DHS S&T CPS Week 2010 Stockholm, Sweden April 13, 2010 Dr. Nabil Adam (<u>nabil.adam@dhs.gov</u>), Fellow/Senior Program Manager Infrastructure & Geophysical Division Science and Technology Directorate, U.S. Department of Homeland Security

Science & Technology Directorate U.S. Department of Homeland Security

S&T Organization

Applications

3

DHS S&T FY09 Investment Portfolio

Balance of Risk, Cost, Impact, and Time to Delivery

Product Transition (0-3 yrs)	Innovative Capabilities (2-5 yrs)
• Focused on delivering near-term	High-risk/High payoff
products/enhancements to acquisition	• "Game changer/Leap ahead"
Customer IPT controlled	• Prototype, Test and Deploy
• Cost, schedule, capability metrics	• HSARPA
Basic Research (>8 yrs)	Other (0-8+ years)
Basic Research (>8 yrs)Enables future paradigm changes	Other (0-8+ years)Test & Evaluation and Standards
 Basic Research (>8 yrs) Enables future paradigm changes University fundamental research 	 Other (0-8+ years) Test & Evaluation and Standards Laboratory Operations & Construction
 Basic Research (>8 yrs) Enables future paradigm changes University fundamental research Gov't lab discovery and invention 	 Other (0-8+ years) Test & Evaluation and Standards Laboratory Operations & Construction

Customer Focused, Output Oriented

Homeland Security S&T Enterprise

Centers of Excellence Alignment

S&T DIVISIONS

Infrastructure and Geophysical Division (IGD)

Objectives• Develop capability

- Develop capabilities to identify and mitigate the vulnerabilities of the 18 critical infrastructure
- Improve the ability of the Nation to prepare for, respond to, and recover from all-hazards emergencies to keep our society and economy functioning

Program Elements

- Critical Infrastructure Protection
- Geophysical
- Preparedness & Response
- Cyber-physical Systems Security

IGD R&D Programs: My Focus

- Unified Incident Command & Decision Support (UICDS)
- 2. Complex Modeling,Simulation, and Analysis (CMSA)
- Cyber-physical Systems
 Security (CPS) New
 initiative

UICDS

- Information Sharing (intelligent)

- Policies, Security, and Privacy
- Sensors (numerous types)
- Information Management & Planning documents and data

- Incident Management

- Provide reasoning capabilities to assist IC for identifying:
 - Appropriate response plan
 - Required resources and their location
 - Response activity specific agencies
- Provide functionalities, data, and tools for Incident response planning, execution, monitoring/tracking

Interoperability and Expandability

Provide the building blocks (data, basic functionalities & tools) for composing new applications

Data Analysis

Provide plug and play support to external data analysis applications

Complex Event Modeling Simulation & Analysis (CEMSA)

- Objective
 - Provide Models, tools, techniques, methodologies, to enable CIKR owners/operators and decision makers to:
 - Assess, in a tangible way, impact of their decisions on the infrastructure
 - when dealing with multiple events (man-made attacks or natural) occurring possibly within close proximity - spatially or temporally
 - Valuable insight
 - Interdependencies
 - Cascading effects

Complex Event Modeling Simulation & Analysis (CEMSA)

Program Structure

- CEMSA is a 5-year program Major milestones:
 - Initial Operational Capability (IOC)
 - Deliverable: Minimum system components
 - Functionality: Consequence analysis of multiple, concurrent disruptions.
 - Delivery date: 2nd Quarter 2013
 - Full Operational Capability (FOC)
 - Deliverable: Final platform
 - Functionality: Complete the CEMSA system and satisfies all requirements.
 - Delivery date: 2nd Quarter 2015

Current System

- Manual/human-intensive
- Sequential processes
- Inconsistent
 - Methods
 - Results

Desired Capabilities

- 1."On the fly" integration
 - Time constraints
 - Fidelity consequences analysis
- 2. Well defined "semantics"
- 3. Architecture and process enabling
 - Timely analysis using best available
 - infrastructure
 - Performance
 - Systems behavior
 - Disruption models
- 4. Domain behavior model analysis
- 5. System-wide behavior analysis of (worst-case scenarios)

Current Status and Future Events

"Future Directions in Critical Infrastructure Modeling & Simulation" workshop (October 2008)

- 150 SMEs
- Infrastructure Protection
- Future Directions in Critical Infrastructure Modeling & Simulation Workshop Report (December 2008)

CEMSA Broad Agency Announcement

- Published (August 2009)
- Selection Evaluation Board (SSEB) review completed (December 2009)
- SSEB award recommendation (January 7, 2010)

"Grand Challenges in MSA for Homeland Security" workshop (March 2010)

- Over 200 SMEs

Next generation CEMSA Broad Agency Announcement

- Published $(2^{nd} Qtr 2010)$

Cyber-physical Systems Security (CPS)

Cyber-Physical system (CPS)

- Tightly coupled and coordinated System of Systems (SoS)
 - Computational and information management components
 - Sensing components
 - Communication components
 - Physical components and processes
- Prevalent in most infrastructures
- Current trend
 - "Smart" Technologies
 - Future expansion of CPS in multiple domains

Electric Grid: A Complex Network

- U.S. Electric Power Grid
 - Largest
 - Most complex
- Interconnected
 - Local
 - Regional
 - National levels
 - Power generation
 - Transmission
 - Distribution
- Highly interdependent network of nodes
 - Failure of single node could potentially have cascading effects

CPS Security Threats

- Susceptible
 - Accidental events
 - Natural disasters
 - Mechanical failure
 - Inadvertent actions of authorized users
 - Deliberate unauthorized access
 - Insider threat
 - Hackers
 - Adversaries

CPS Security Threat: Consequences

- System susceptibilities may cause critical infrastructure failures or disruptions
 - Human health impacts
 - Loss of life
 - Public endangerment
 - Environmental damage
 - Loss of public confidence
 - Severe economic damage

Cybersecurity

- Traditional view
 - Network security
 - Data security
 - Preventing "denial of service"
 - Authentication and authorization
 - Software security, trustworthiness, and reliability
 - Protection from malicious software
 - Security in COTS-based systems

CPS Security is an emerging area of development

CPS Security

- Methodology must view CPS as an integrated and unified SoSs.
 - Cyber components
 - Network security
 - Authentication & authorization
 - Software trustworthiness
 - Physical components (behavior modeled by continuous dynamics)
 - Safety requirements
 - Security policy
 - Physical processes
 - Progressive state changes

- Interactions

• Account for interdependencies

Supervisory Control & Data Acquisition (SCADA)

PAST

- Proprietary protocols, techniques and underlying control system
- No public information
- No telecommunications or only point-topoint connections via leased/owned lines
- No connections to administrative business network or Internet
- Implementation without adequate security mechanisms due to perceived "hacker-free" environment
- Totally controlled and secure
- Protocol implementation took no account of "stress conditions"

PRESENT

- Technology and operational environment have not kept pace with rapid technical and operational developments
- Protocols are open standard; description on Internet
- Runs as application on Windows or Linux and uses Internet protocols that can be exploited
- Remote access by maintenance personnel is commonplace
- New option on PLC boards that cannot always be disabled provides remote access
- Recent efforts provide guidelines for specific security policy, but are general

Example – Distillation Column in a Chemical Plant - Safety & Security Analysis

- Start-up process of a distillation column
 - The dynamics is described by differential equations using the process variables
 - Process variables include, bottom temperature, top temperature, feed flow, tops flow, and reflux flow
 - The column operates in different control modes; switching between these control modes is caused by:
 - The value of the continuous variables exceed a given threshold; or
 - Manual control actions by users,
 - e.g., opening/closing of a steam valve
 - System dynamics is modeled as a hybrid automaton

Hybrid Automaton based Framework

- Allows representation of system dynamics, safety requirements, and security policies in a unified manner
- Uncover system vulnerabilities by providing answers to such questions as:

Q1. Will the system be in undesirable state?

Q2. Does the security specification ensure the least privilege requirement?

(*i.e.*, the system cannot go into an undesirable/unsafe state due to accidental or malicious actions of over-privileged users.)

Q3. Is security specification sufficient to guarantee all safety requirements?

- Possible Approach
 - Reachability analysis of hybrid automaton
 - Use HyTech tool for reachability analysis
 - Deadlock and liveness analysis

Hybrid Automaton of the Startup Process

Safety Requirements – Security Policy

- Safety, e.g.,
 - If the chemical in distillation column is heated by steam for more than 5 minutes (300 seconds); then steam supply must not be discontinued before chemical feed valve is closed, otherwise, the chemical would be wasted.
 - This implies that if the cumulative time elapsed in mode q3 is 5 minutes (300 seconds) or more than the column must not be switched to mode q1.
 - A steam valve opened at 30% flow rate must not be switched to 40% flow rate in less than 900 seconds,; otherwise there is a risk that heat shock will fracture part of the physical distillation column.

- Security Policy, e.g.,
 - Opening/Closing of Steam Valve
 - Only users assigned to role R1 can change the setting, i.e., open or close steam valve
 - A steam valve cannot be closed repeatedly by different users; i.e., if a steam valve is closed by some user, then it cannot be closed again by other user.
 - Opening of Reflux Valve
 - Only users assigned to role R2 can open the reflux valve.
 - A user who closes the steam valve cannot open the reflux valve (separation of duty)
 - Policy configuration
 - Users u1, u2 assigned to R1; u3 assigned to R2
 - R2 inherits the permissions of role R1

Policy Automaton for Steam Valve Opening & Closing

Example – Distillation Column in a Chemical Plant: Safety & Security Analysis

- Start-up process of a distillation column
 - The dynamics is described by differential equations using the process variables
 - Process variables include, bottom temperature, top temperature, feed flow, tops flow, and reflux flow
 - The column operates in different control modes; switching between these control modes is caused by:
 - The value of the continuous variables exceed a given threshold; or
 - Manual control actions by users, e.g., opening/closing of a steam valve
 - System dynamics is modeled as a hybrid automaton

CPS Security – Research Needs (1)

- 1. Models and theories that bridge the cyber world and the physical world:
 - Comprehending both the discrete and continuous perspectives
 - Integrating multiple models and views
 - Model abstractions that span different levels of granularity
- 2. New security strategies (methods & techniques) for integrated CPS dealing with:
 - Verification & Validation (V&V) techniques
 - Continuous dynamics of the physical world
 - Discrete logical transitions of the cyber-world
 - Authentication & authorization of millions of devices
 - Trusted systems from untrusted components

CPS Security – Research Needs (2)

- 3. Performance and risk assessment testbeds that can span multiple CPS sectors:
 - Provide a controlled environment where we have access to the ground truth (e.g., stress level, risk, interdependency, component interactions)
 - Enable vulnerability assessment of Cyber-physical SoSs by
 - Replicating a multitude of control system specifications
 - Running simultaneous cyber/physical attacks on multiple systems
- 4. Coherent security performance metrics of CPS in different sectors
- 5. More dialogue among the stakeholders of CPS and the nation's critical infrastructure

Initial Focus

- Coordinate, collaborate, and leverage related work
 - Internal DHS directorates
 - External agencies
 - NRC
 - DOE
 - NSA
- Define initial focus sectors
 - Nuclear
 - Energy
 - Transportation
 - Medical devices
 - Chemical
- Develop basic and applied research initiatives

Homeland Security

