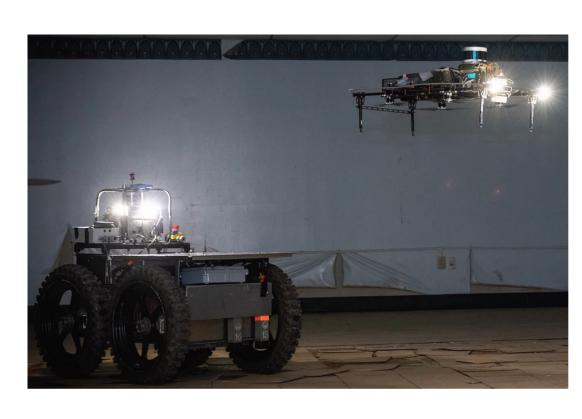
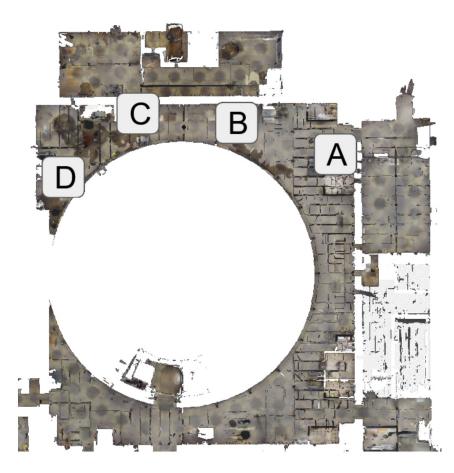
Adaptable and Robust Multi-Robot Decision Making through **Generalized Sequential Stochastic Task Assignment**


Geoff Hollinger (PI), Graeme Best (Postdoc), Colin Mitchell (PhD Student) Collaborative Robotics and Intelligent Systems Institute, Oregon State University, http://research.engr.oregonstate.edu/rdml/, Geoff.Hollinger@oregonstate.edu


Overview:

The goal of this project is to maximize the probability of correctly deploying the heterogeneous passengers of a marsupial robot team (e.g. aerial vehicles mounted on a ground robots or underwater vehicles mounted on surface vehicles). At each possible decision point, a decision must be made regarding which, if any, of the heterogeneous passengers will be deployed based on the multi-task reward gained from deployment. Multiple deployment decisions are made based on sequentially revealed random variables.

Challenges:

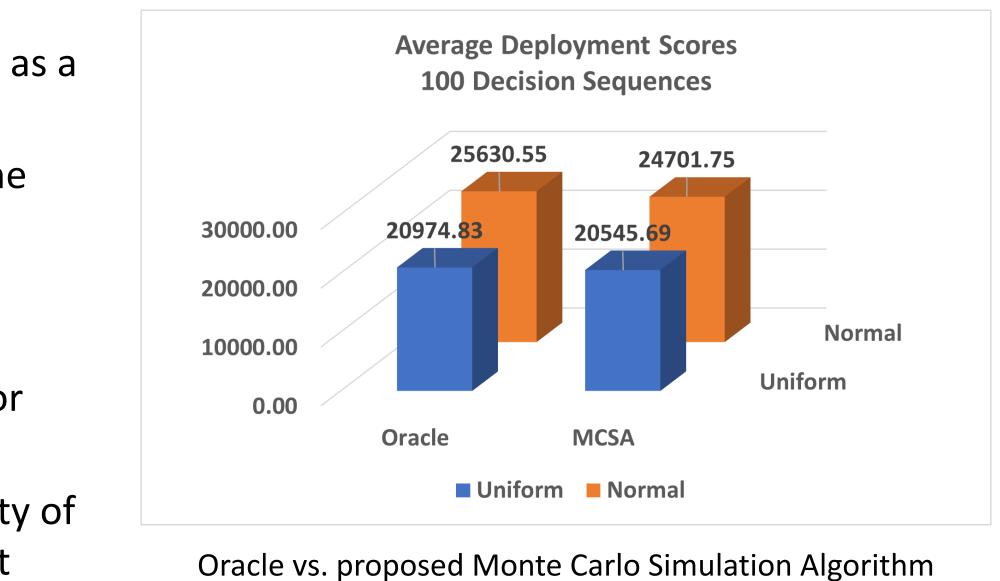
- Prior work cannot be easily extended to solve this problem
- Sequential decision making under uncertainty
- Deployment decisions must be made before uncertainty is reasonable
- Multiple tasks with uncertain rewards; reward distributions
- More decision points than resources to deploy

Left: Carrier robot capable of launching aerial robots (photo: CMU and OSU) **Right:** Example from DARPA Subterranean challenge of deployment locations

Education and Outreach:

- OSU Robots in the Real World Research Experience for Undergraduates
- ASE High School Summer Scholars program
- Graduate-level Sequential Decision Making course in OSU Robotics curriculum

2022 NRI & FRR Principal Investigators' Meeting April 19-21, 2022


Solution:

esolved vary by task	We formulate the multi-robot deployment decision sequential stochastic assignment problem (SSAP):
	 Use Monte Carlo Simulation to incorporate the reward distributions
	 For all tasks
	 For all remaining decision points

- Determine optimal remaining deployments for each simulated trial
- Choose solution that maximizes the probability of an optimal deployment at each decision point
- Repeat for each decision point

Scientific impact:

- Establishes a general approach for multi-task sequential decision making with heterogeneous resources under uncertainty
- Possible extensions include:
 - Deploying the same heterogeneous resources multiple times
 - Deploying multiple heterogeneous resources to the same task
 - Updating reward distributions in the middle of a decision sequence

(MCSA): 10 resources, 20 decision points.

Societal impact:

- Exploration
- Search and rescue
- Long-term deployments for autonomous teams
- Maintenance and repair
- Deployments in unsafe environments
 - Industrial accidents
 - Natural disasters
 - Harsh environments (deep ocean, desert, etc.)
 - Remote spaces

Award ID#: 2103817