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Robotic Phenotyping

Approach:
• Use a separate Gaussian Process (GP) 

spatial phenotype distribution model 
for each genotype.

• Identify a sequence of contact 
measurement sample locations using 
greedy information gain.

• Plan paths from one sample site to the 
next that maximize information gain 
(using visual measurements) while 
minimizing path length.

• Update GP estimate after each sample, 
using visual measurements along most 
recent path segment and contact 
measurement at sample location.

Process: 
• Robots start a random initial positions.
• Initial distribution estimate is uniform.
• Robots follow adaptive coverage controller to 

learn model and approach Voronoi centroid.
• Robots take measurements at sample 

locations and update Mixture of GP model.
• Continue until robots converge at Voronoi

centroids.

Setting and Assumptions: 
• 54 node sensor network (Berkeley 

Intel Lab Data Set, 2004)
• 3 robots.
• Robots measure temperature when 

they are at a node location.
• Our approach is compared to uni-

model GP approach.
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Challenges
• Ground-based phenotyping 

systems collect higher quality 
data than aerial systems, but 
have a lower coverage rate.

• Plant genotypes represent a non-
spatial variable that must be 
considered when estimating 
phenotype distribution in a field.

• Measurements exhibit high 
stochasticity due to biological 
variations and sensor noise.

• Heterogeneous phenotype 
measurements have different 
levels of value and cost.

Scientific Impact
• Informative path planning 

provides a means of determining 
where and when to sample for a 
variety of scientific data 
collection tasks.

• Multi-robot coordination has 
relevance to decentralized 
decision making problems for 
static and mobile distributed 
systems.

• Employed models provide a 
potential framework for 
discovery of new phenotype-
genotype associations.

Broader Impact
• Effectively increasing coverage 

rate of mobile phenotyping 
systems will improve crop 
breeding programs and provide 
producers with better crop 
monitoring for real-time 
management decisions.

• Educational impact: The project 
supports one full-time Ph.D. 
student (Wenhao Luo), one full-
time M.S. student (Sumit Kumar), 
and PIs run K-12 education 
outreach (Girls of Steel)

Informative Path Planning

Multi-robot Adaptive Sampling

Phenotype Map ErrorProcess:
• Choose n sampling locations using greedy 

information gain.
• For each sampling location: plan path; 

execute path; sample; update GP.
• Repeat (choose n new sampling locations)

Setting (Simulated Data): 
• 4 genotypes, spatial variation modeled 

by MOG for each genotype.
• Rectangular field, 15 rows, 25 ranges.
• Each plot is randomly assigned a 

genotype (~94 reps).
• Visual and contact measurements 

measure same phenotype, contact is 
higher fidelity.

Approach:
• Adaptive sampling with information-

theoretic criterion for multi-robot 
coverage control.

• Efficient model learning and location 
optimization in an initially unknown 
environment.

• Collaboratively learning of the density 
function model using Mixture of GPs 
with hyper-parameters learned locally 
from each robot.

• Resulting GP mixture model provides 
improved prediction accuracy and 
reduced model uncertainty, increasing 
multi-robot coverage performance. 
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Approach
• Develop stochastic models (e.g., 

Gaussian Process (GP)) that 
capture the correlations between 
spatial and genetic variables.

• Develop informative path 
planning algorithms that 
optimally select sampling 
locations to update GP model.

• Develop multi-robot 
coordination algorithms that 
assign sampling positions for 
field coverage with limited 
communication between robots.

Approach:
• Wheeled ground robot autonomously 

navigates up and down rows of a 
breeding trial.

• Custom camera and processing collects 
images and extracts visual phenotypes 
while driving (stalk count, stalk width, 
light interception, leaf area, leaf 
necrosis, etc.)

• Robot occasionally stops to use arm to 
deploy contact measurements such as 
a stem penetrometer (stem stiffness) 
or a leaf spectrometer (chlorophyll, 
etc.)

Process:
• Current practice covers field exhaustively 

every two weeks.
• Measured phenotypes are associated with 

spatial plot locations and visualized in field 
maps.

Experimental Setting
• 4 acre sorghum breeding test plot in 

Clemson, SC (collaboration with 
Steve Kresovich, Clemson University)

• 250 accessions (varieties), 3 reps 
each, for a total of 750 plots

• Plots laid out in a rectangular field of 
17 rows and 44 ranges (columns)
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