
FUSED Implementation Summary

Submitted by: Adventium Enterprises

Contact Information: Mark Boddy (mark.boddy@adventiumenterprises.com)

FUSED is a language used to specify compositions of design engineering models written in a variety
of other modeling languages. The implemented and delivered FUSED toolset is a tool integration frame-
work that supports multiple engineers collaborating in the development of a diverse set of engineering
models used for multiple purposes in multiple phases of design. The implementation consists of a set
of translation and process management tools that manages the semantically-correct transfer of informa-
tion among a set of models. All of the implemented software is open source, though the demonstration
system does employ some COTS and freeware tools. Where it is permissible, we have included installers
for these tools. Where that is not allowed, we provide pointers to the appropriate web-sites for tool
purchase or authorization, as required.

FUSED is extensible to support a chosen set of modeling environments. Implemented examples
in our software delivery include requirements (in SysML), solid geometry (in Creo), computational
fluid dynamics (in AVL), dynamical systems (in OpenModelica), and vetronics/avionics (in AADL).
An extensible language approach is used, so that many FUSED capabilities are presented to domain
experts as minor additions to familiar languages and tools. We also provide a FUSED language to
specify compositions of models. Compositions may be used for multiple purposes, for example to specify
multiple views of a component, verify inter-model consistency, specify part/whole assemblies, or apply
design operations to models. The delivered system includes support for nine domain-specific modeling
environments, used to model various aspects of a small UAV design. A set of demonstrations are
presented, both as a video and in document form, using this instantion of a FUSED integration.

FUSED uses the Silver higher-order attribute grammar language and tools to specify and imple-
ment tools that understand and extend the various modeling languages of interest. Developed as
part of the Minnesota Extensible Language Tools research project at the University of Minnesota
(http://melt.cs.umn.edu/), Silver is open-source software, available from the University. Silver has
special support for defining and implementing sets of extensions to existing languages, not all of which
will necessarily have formal grammars or semantics. A modeling toolset uses many more file formats
than just the language written by users; there are typically a variety of intermediate and analysis result
file formats. The delivered implementation includes tools that can parse Creo/ProE mass properties
analysis files and AVL aerodynamics stability derivatives files.

In the delivered implementation, Silver is used to generate tools that can extract model elements
from files written in supported modeling languages, convert them to a canonical internal representation
(which inside the tool takes the form of a higher-order attributed abstract parse tree), and convert
from a canonical representation to any other language representation in which elements of that type
make any sense. One concrete representation that we have defined for every ontology type is an XML
representation. Any collection of model elements in any hierarchical namespace structure can be written
to a file in this format. The implementation also includes a set of basic operations on elements of the
internal ontology. Examples of these operations include extracting a subset of elements from a collection,
composing elements to form a new collection, adding type qualifiers, or checking simple properties for
an element.

FUSED includes a graphical composition language, implemented via an editor and compiler using
Eclipse GEMS. The compiler generates ant build scripts. Executing a composition means executing a
target in one of these ant build scripts. The overall execution is actually a hierarchy of build scripts
that call each other. These scripts can be divided into two kinds, those that are generated entirely by
the compiler for a specified composition, and builds for a particular model developed in a particular
modeling environments (which are the leaf builds in a tree of builds invoked for a particular purpose
by the system engineer). The FUSED compiler proper generates build scripts , and passes paths to
collections of FUSED elements in canonical representation between model builds, performing FUSED
operations on these collections as specified to get the various models to talk to each other.

1

mkaim
Typewritten Text

mkaim
Typewritten Text
Approved for Public Release, Distribution Unlimited




