Adversary-aware Host Address Mutation

Pls: Ehab Al-Shaer; Researchers: J. Haadi Jafarian, Qi Duan

Motivation & Objectives

- Static and predictable behavior of cyber systems a fundamental design vulnerability
 - Reconnaissance is simple
 - Evasion is simple via careful selection of attack parameters
- IP address allocation is mostly static
- Several approaches for IP hoping were proposed but they lack effectiveness
 - Based on DHCP or NAT (DyNAT, NASR): too infrequent and traceable
 - Uniform mutation limits the effectiveness due to lack of adaptiveness
- The goal of adaptive mutation is to increase benefit, while reducing cost.
- To be adaptive, we must characterize adversarial scanning.
 - Ref: Adversary-aware IP address randomization for proactive agility against sophisticated attackers,
- IEEE INFOCOM, May 2015.

- **Approach**: allocating new IPs from address ranges that have **lower risk**
- Observe the sequence of **unsuccessful probes** generated by network hosts
- Use statistical hypothesis testing to estimate their distribution Two hypotheses
 - Non-uniformity: tests if scans are skewed toward certain ranges of address space
 - **Non-repetition**: tests if scans are avoiding repeated probing of same IP address
- Changing real IP (rIP) address of hosts disrupts active sessions Instead, we associate hosts with **ephemeral IP addresses (eIP)**
 - Chosen from unused address space
 - Automatically translated to/from rIPs at network edges →
 - Not used for routing
- New eIP is announced to clients through **DNS** with short **TTL**

IP addresses are mutated without jeopardizing cyber operation or breaking active sessions

Non-uniformity test

Q1: Are scans locally concentrated in specific ranges?

- Increases success rate and decreases detectability
 - e.g. Local-preference, sequential, divide-and-conquer
- Use Pearson's χ-squared test to calculate deviation from uniform distribution with p-value = 0.05
- If deviation is very high, scans are non-uniform
- Q2: If accepted, which ranges are more hazardous?
- Ranges with abnormal number of scans (outliers)

Non-repetition test

- Q1: Are scanners avoiding/limiting repeated scanning?
- Reduces detectability and scanning budget
- e.g. Cooperative, divide-and-conquer Calculate **standard deviation** of scan distribution
- If deviation is very low, repetition is limited
- Q2: if accepted, which addresses are more hazardous?
- Addresses with low num. of scans
- Avoid using these addresses as eIPs

Game-changing

Attacker's worst strategy (uniform scanning) in static networks becomes her best in our adaptive network

If attacker uninformed of adaptive mutation \rightarrow attack is deterred

If attacker informed of adaptive mutation → forced to do uniform scanning → attack becomes more detectable

Interested in meeting the PIs? Attach post-it note below!

