Robustness Analysis of Safety-Critical Systems

Gary Balas¹, Peter Seiler¹, and Andrew Packard² ¹University of Minnesota ²University of California, Berkeley

National Workshop on Transportation CPS Session IV: Model-Based Design, Validation, and Verification January 24, 2014

Themes: Model Based Design, V&V

Boeing 787 Dreamliner

Observations:

- •Extreme reliability
- Model-based Design
- Requirements development
- Distributed manufacturers
- Multi-rate system

(Image Copyright: H. Michael Miley)

Automotive Active Safety

Observations:

- Model-based Design
- Environmental uncertainty
- Human-machine interface
- Probabilistic errors in sensor fusion

(Image Copyright: T. Wang)

NASA Orion Crew Exploration Vehicle

Observations:

- Nonlinear effects
- Dynamic uncertainty
- Use of describing functions and Monte Carlo Sims

(Image Copyright: NASA)

What We Do Well: Linear Analysis

- Nominal: Linear systems described by ordinary differential equations (ODEs) or difference eqns (DEs)
 - Metrics: Freq. & time responses, classical stability margins, variance due to stochastic inputs
 - 1000 states, 100's of inputs
- Uncertainty: Linear ODEs with rational dependence on parametric and/or dynamic uncertainty
 - "Known" unknowns
 - Metrics: Induced gains, generalized stability margins
 - 100's of states, 10's of inputs, 10's of uncertainties
 - Computational complexity issues
- High quality software exists for these problems.

Validation with Linear Analysis

- Ex: Gain-scheduled flight controls
 - Q: How much time delay can be tolerated?
 - A: (answers a different question) Here's a scatter plot of delay margins at 1000 trim conditions throughout envelope
- Why was linear analysis so useful in the past?
 - Domain-specific expertise exists to interpret linear analysis and assess relevance
 - Fast, defensible answers on high-dimensional systems

Proofs of behaviorMonte Carlo Simswith certificates& Linear Analysis

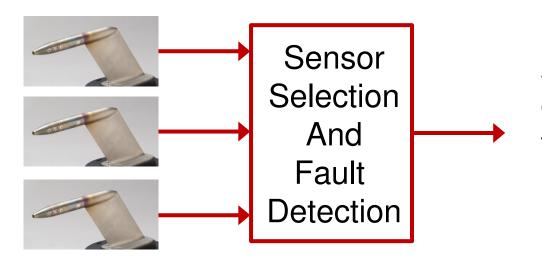
What could we do well?

- Systems that are gain-scheduled (time-varying) and/or depend on a few nonlinear elements (e.g. saturation)
 - Systems with and without uncertainty
 - Metrics: Induced gains, generalized stability margins
 - 10's of states, 10's of inputs, 2-3 uncertainties, 2-3 parameters
- Well-developed theory and "beta" code for both classes
- Questions:
 - Are numerical methods valued?
 - What is the path to commercialization path from theory to SW useful for the practicing engineer?

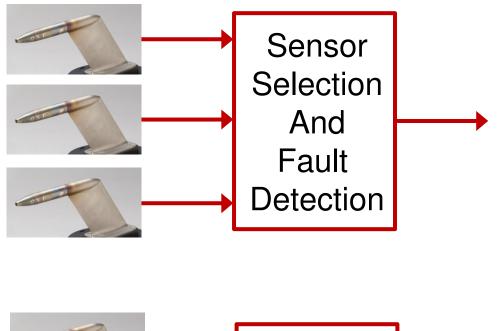
Some issues for current/future CPS

- Strongly nonlinear dynamics
- Hybrid systems
- Large-scale systems (Except linear systems)
- Uncertainty: Unknown unknowns
- Need for tools that cut-across domains (SW/HW)
- Specific time domain performance criteria

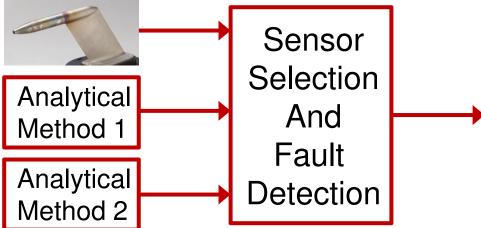
These issues limit our ability to certify the performance of novel algorithms for CPS


Example: Shift to Analytical Redundancy

Freeman, Seiler, Balas, "Air data system fault modeling and detection", 2013



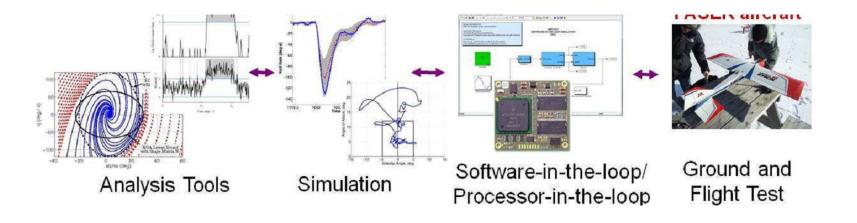
Example: Shift to Analytical Redundancy



Architecture reliability can be easily assessed from sensor failure rates

Example: Shift to Analytical Redundancy

Architecture reliability can be easily assessed from sensor failure rates


Comments: 1. Analytical methods introduce new failure modes 2. Is there a benefit for algorithmic dissimilarity?

Certification of Novel Algorithms

- How do we certify algorithms that are nonlinear, stochastic, etc?
 - Probabilistic algorithm errors
 - [Koopman,Wagner], [Heimdahl,Rayadurgam,Seiler,Balas]
 - New performance metrics are likely required
 - [Belcastro]
 - Can we gain "trust" in the algorithm by fielding it with limited authority?
 - [Seiler, Gebre-Egziabher, Rife, Guyer]
 - Comment Yesterday: We don't V&V Pilots. We trust them based on training/experience.

Compositional Analysis

- Passivity/Lyapunov specifications on components
 - [Antsaklis, Gupta, Wang], [Balas, Seiler, Packard]
- Integration of simulations and more rigorous methods
 - [Jin, Deshmukh, Kapinski, Ueda, Butts]
- Correctness by design
 - [Bhatt, Madl, Oglesby, Owre, Shankar, Tiwari], [Heimdahl, Rayadurgam, Seiler, Balas], [Kulkarni]

Education in Model-Based Design

- <u>Challenge</u>: How do we train engineers in model-based design, validation and verification?
 - Are there specific education issues for transportation CPS?
- <u>Key Issues:</u> [Taken from *Pattipati, Pattipati, Ghimire*]
 - How to teach top-down thinking needed for a successful system design engineer using case/project-based learning?
 - Multi-domain Modeling
 - Formal Methods for Requirements, Verification & Validation
 - MBD-based Design Flows for Coordinated, Standardized and Measurable Design Process