
Computational Science and Engineering
(Int. Master’s Program)

Technische Universität München

Master’s Thesis

Parallel Best-First Heuristic Search applied to
Cooperative Planning for Automated Vehicles

Author: Agamirzov Evgeny
1st examiner: Prof. Dr.-Ing. Matthias Althoff
2nd examiner: Univ.-Prof. Dr. Hans-Joachim Bungartz
Assistant advisor(s): Dipl. Inform. Daniel Hess
Thesis handed in on: June 31, 2016

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

June 29, 2016 Agamirzov Evgeny

Acknowledgments

First of all, I wish to thank Prof. Dr.-Ing. Matthias Althoff for providing me a great op-
portunity to do my thesis in Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut
für Verkehrssystemtechnik.

Also, I sincerely thank DLR’s staff and especially Daniel Hess for their guidance and
encouragement in carrying out this project work.

Finally, I would like to give my special thanks to all my family and friends who have
been supporting me throughout this eight month.

v

Abstract

This paper studies the utilization of multi-core processors for path planning algorithms.
A* best-first heuristic search algorithm is used for path finding, where the state space is
a search tree that is built from discrete trajectory paths (motion primitives). Particular-
ity of the given search problem is computationally expensive expansion step and large
branching factor of the tree. Most recent parallelization techniques has been evaluated
to identify which one fits best for the existing planning problem (considering significant
differences between A* parallelization approaches). Finally, two schemes were chosen to
be tested in real life scenarios - PA* and PRA* (HDA*). These algorithms represent two
basic strategies of the best-first search parallelization that are shared OPEN list (PA*) and
private OPEN lists (PRA*, HDA*). Both approaches has been tested for execution time and
memory usage, and eventually compared head to head. Experiments were conducted for
different road scenarios with various complexity. The main goal of this work was to show
that multi-core machines can be successfully applied to path finding (planning) problems
for automated vehicles. The thesis was funded and supported by Deutsches Zentrum für
Luft- und Raumfahrt (DLR), Institut für Verkehrssystemtechnik. All implemented algo-
rithms were embedded into DLR’s simulation environment where real car models and
road scenarios are being tested.

vii

viii

Contents

Acknowledgements v

Abstract vii

Outline of the Thesis xiii

I. Introduction and Theory 1

1. Introduction 3

2. Theory 7
2.1. Motion Planning . 7
2.2. Continuous State Space Sampling . 7
2.3. Control Space Sampling . 8
2.4. Best-First Heuristic Search . 8

2.4.1. A* Search . 9
2.4.2. Anytime Weighted A* Search . 10

2.5. Parallel Best-First Heuristic search . 10
2.5.1. Shared lists . 11
2.5.2. Private lists . 11
2.5.3. Bottlenecks . 11

2.6. Problem Statement . 12

II. Vehicle and Environment Models 13

3. Motion Primitives 15
3.1. Kinematic Vehicle Model . 15
3.2. Constraint Graph . 16
3.3. Trajectory Curves . 17
3.4. Trajectory Enclosure Region . 19

4. State Space 21
4.1. Single-Agent Planner State Space . 21
4.2. Multi-Agent Planner State Space . 22

4.2.1. States Combination Node . 22
4.2.2. Computational Demands . 23

ix

Contents

III. Path Planners 25

5. Contingency Planner 27
5.1. Heuristic . 27
5.2. Planning Sequence . 27

5.2.1. Exploration . 28
5.2.2. Expansion . 28
5.2.3. Collision Detection . 29

5.3. Example . 29

6. Cooperative Contingency Planner 31
6.1. Modification to the Contingency Planner . 31
6.2. Planning Sequence . 31

6.2.1. Advanced Node Generation . 32
6.2.2. Node Assessment . 32
6.2.3. Mutual Collision Detection . 33

6.3. Example . 34

IV. Best-First Search Parallelization Applied to Path Planning 37

7. Parallelization Strategy 39
7.1. Software Environment Limitations and Memory Architectures 39
7.2. Lists Structures . 40

8. Parallel A* Planner 41
8.1. Algorithm Overview . 41
8.2. Planner Architecture . 41
8.3. Optimization and Evaluation . 44

9. Hash-Distributed Parallel A* Planner 45
9.1. Algorithm Overview . 45
9.2. Planner Architecture . 45

9.2.1. Hash Function . 45
9.2.2. Communication . 46

V. Results and Conclusions 49

10. Performance Evaluation 51
10.1. Criteria . 51
10.2. Road Scenarios . 51

10.2.1. Normal Scenario . 51
10.2.2. Difficult Scenario . 54
10.2.3. Extreme Scenario . 57

10.3. Summary . 59

x

Contents

11. Conclusions and Future Work 61
11.1. Conclusion . 61
11.2. Future Work . 62

11.2.1. Possible Improvements on the Sequential Planner 62
11.2.2. Hash Function Choice . 62
11.2.3. Multi-Agent Planning . 63

Appendix 67

12. Appendix 67
12.1. Main Function . 67
12.2. Thread Function . 68
12.3. Root Node Generation . 69
12.4. Search Step . 70

12.4.1. Expand . 70
12.4.2. Explore . 73

12.5. Node Generation . 74
12.6. Node Assessment . 75

Bibliography 79

xi

Contents

Outline of the Thesis

Part I: Introduction and Theory

CHAPTER 1: INTRODUCTION

Overview of the thesis and it purpose.

CHAPTER 2: THEORY

Theoretical background of path planning problems and algorithms.

Part II: Vehicle and Environment Models

CHAPTER 3: VEHICLE MODEL AND MOTION PRIMITIVES

Mathematical model of the vehicle and trajectory generation.

CHAPTER 4: STATE SPACE

State space description for single and multi-agent planners.

Part III: Path Planners

CHAPTER 5: SINGLE AGENT CONTINGENCY PLANNER

Emergency breaking path planning algorithm.

CHAPTER 6: MULTI-AGENT CONTINGENCY PLANNER

Cooperative emergency path planner where more than one vehicle is involved.

Part IV: Best-First Search Parallelization Applied to Path Planning

CHAPTER 7: STRATEGY CHOOSING

Reasoning the parallelization algorithms architecture.

CHAPTER 8: PARALLEL A*

Standard parallelization approach applied to multi-agent contingency planner.

CHAPTER 9: HASH-DISTRIBUTED PARALLEL A*

Parallel A* with hash function based domain distribution.

xiii

Contents

Part V: Results and Conclusions

CHAPTER 10: RESULTS

All planner algorithms tested for distinct road scenarios.

CHAPTER 11: CONCLUSIONS AND FUTURE WORK

Work summary and possible improvement suggestions.

xiv

Part I.

Introduction and Theory

1

1. Introduction

Nowadays automated driving systems are being developed by many institutions and au-
tomotive industry companies around the world. These systems are intended to optimize
traffic flow on future roads and make driving experience less stressful for an every day
user. Ideally, a vehicle has to navigate in the surrounding environment based on sensor
data without any human input [11]. Such capabilities usually require a set of various sen-
sors, a data processing module and a control system. Raw sensor data along with the
current vehicle parameters is used to construct an environmental model and make a con-
trol decision which has to consider all probable road scenarios and be as safe as possible
for the driver and the surrounding environment [23]. In case of autonomous vehicles deci-
sion making means computing safe driving path in finite period of time. One of the most
popular path planning techniques is the utilization of deterministic heuristic-based search
algorithms (Dijkstra, A*, etc.) [9]. In this case path planning is defined as a search problem
where parameters depend on the route criteria. Path planning problem in the continuous
space is reduced to a search problem in the discrete space (e.g. graph) by applying state
space sampling.

Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Verkehrssystemtechnik
is developing it’s own automated driving system that includes a simulation environment,
a set of path planners for distinct road conditions and two prototype vehicles that carry
a number of sensors, controllers and on-board computers. The system is currently under
development and thus many modules like path planners are advancing and being actively
tested. The project is created in collaboration with the UnCoVerCPS consortium that pro-
vides cutting edge technologies in cyber-physical systems. This work was funded by DLR
to continue the development of path planning algorithms in the direction of parallel algo-
rithms application and also a research of multi-agent planners.

This paper focuses on defining a computationally expensive path planning problem for
a set of agents and then evaluate how modern parallelization schemes for heuristic search
algorithms can be applied to this particular problem [25]. It starts with describing a dis-
cretized search domain, proceeds to the environment description, continues with heuristic
search specifics and finally studies the effectiveness of multi-core machines utilization.

This work is based on already existing single agent path planning algorithm developed
at DLR for a real prototype of the robot vehicle [6]. This algorithm is intended to compute
a contingency maneuver path (emergency breaking), that means it is only initiated when
an emergency road scenario occurs. It is operating in real time (finds solutions below 0.1
seconds margin) and at the same time provides a safety guarantee. Generally speaking,
the domain of the single agent emergency planner (base algorithm [6]) is the same as for
the multi-agent planner that is introduced by this paper. The search algorithm is also the

3

1. Introduction

same, which is Anytime Weighted A* [24]. However there are differences in the search
space structure that are described in detail in chapter 4 .

To build a search space one has to define a vehicle model first. This would apply restric-
tions on the search domain according to the vehicle capabilities (e.g. steep turns become
impossible on high velocities). The vehicle model used in this paper is based on clothoids
[10] and Dubin’s curves. Given that a vehicle has a set of continuous parameter ranges (e.g.
velocity, acceleration, etc.), the clothoid model provides a set of possible vehicle trajecto-
ries according to every parameter combination, considering that the parameter ranges are
discretized. In other words, it generates all possible outgoing maneuvers depending on
the current vehicle state. The maneuver’s trajectory is finite in time and represent a tran-
sition between two vehicle states. Such trajectory is also called a motion primitive [16].
For every discretized vehicle state there is a set of motion primitives i.e. a set of possible
successor states that the vehicle can reach from the current state. Utilization of motion
primitives represent a continuous space discretization by building a search tree with the
root in the initial vehicle position.

Using this vehicle model and the base single agent planner this paper introduces a multi-
agent (cooperative) path planning algorithm where more than one vehicle is involved.
This multi-agent algorithm represents a complex search problem that has to be parallelized
to achieve faster operation. Ideally, it should match the performance of the single agent
contingency planner that is capable of finding the solution in 0.1 seconds time frame. It
should be pointed out that this problem was introduced as an example for a tree search
with large branching factor and expensive expansions, which are typical properties of any
deterministic path planner algorithm [9]. The heuristic function of the contingency plan-
ner is defined by velocity, i.e. the search progresses to the slowing down direction (con-
tingency planning). However, in case other planning tasks like lane changing or parking
are required, the heuristic can be adjusted and only minor changes have to be made to the
planner to fulfill newly given requirements.

There exist many parallelization strategies for best-first search algorithms [4]. One of
the first approaches was to use a standard dynamic scheduling to provide parallel state
expansions. A number of states with the lowest cost were drawn from the OPEN list and
expanded in parallel [18]. Though the algorithm sequence seems natural, it had two major
drawbacks that were significantly reducing the performance. First one is synchroniza-
tion overhead. Since OPEN and CLOSED lists are shared between all threads, the access
to those lists shall be locked to avoid concurrent read and write. Second one is state re-
expansions when the same state can be expanded more than once by different threads
[28][18]. These difficulties occur for any parallel search, thus other attempts on developing
robust multi-threaded search algorithms where aimed for reducing or completely avoid-
ing these effects. One of the ways to reduce the synchronization overhead is to use private
lists for each thread. This scheme would only require communication when distributing
successors among other threads according to some hash function [8][19]. There are also
several techniques on how to avoid or reduce the number of re-expansions [28][33].

In general most papers on parallel best-first search provide testing results for a most

4

common problems like puzzles or grid path-finding [3][19][28] which makes it hard to es-
timate possible performance for real world applications. Thus, all parallelization schemes
had to be carefully evaluated before applying them to the existing planner problem to
make sure that the applied strategy is feasible. This paper describes a few parallel search
strategies that are a combination of several techniques existing nowadays and are intended
to work exclusively with path planner problems or problems with very similar architec-
ture. Since state re-expansion (one of the parallel search bottlenecks) does not occur for the
tree search, this problem could be discarded for the path planner application. Therefore, it
has been decided to assess the classical A* parallelization approach and attempt to make
locking operations as effective as possible [9]. A hash-distributed approach was chosen
as another strategy to appraise because of it’s flexibility and the ability of search space
distribution [8][19]. This work illustrates how different parallelization strategies behave
for distinct road scenarios in terms of performance and memory usage. It also describes
future improvements that might be applied to path planning parallelization techniques.

5

1. Introduction

6

2. Theory

2.1. Motion Planning

Robot motion planning remains a challenging problem in artificial intelligence. Operation
environments are often partially known, complex and dynamic while the computational
power and planning time are limited. This leads to a difficult trade-off between computa-
tional capabilities and algorithm intelligence [17]. The goal of the planning algorithm is to
find a sequence of actions that will transform an initial state of the robot to the desired goal
state [9]. The problem can be modeled with the following non-linear differential equation:

ẋ = f(x, u) (2.1)

Where x is a state, and u is an input (control action). This equation is known as a state
transition equation that shows the state transition under a certain external input [29].

In most applications a deterministic heuristic-based search is used for path planning
computation, considering that the dimensionality of the problem is relatively low [9]. For
that, one has to define a search space that represent a given problem.

2.2. Continuous State Space Sampling

A robot is operating in the continuous space where computations are extremely expensive.
In this case it seems natural to define a finite number of discrete states and an associated
set of actions on top of a given continuous space [23]. In other words, environment of
the robot will be represented by a graph G = (S,E), where S is a vertex i.e. a state, and
E is an edge associated with a corresponding action that has certain cost [9]. Such space
discretization is a common approach of reducing computational complexity of planning.
However it comes at the expense of algorithm completeness, meaning that only a limited
number of actions is available for the current state (unlike a state in the continuous space)
[31].

In path planning, a robot state is normally represented by a spacial coordinate and often
the cost of the action is the distance from one state to another. Thus a typical problem
of path planning is to reach from point A to point B in an optimal way. A path is called
optimal if the cost sum of all state transitions from the initial state to the goal state is min-
imal over all possible path combinations. An algorithm is called complete if in finite time
it can find a solution or indicate that there is no solution for the given problem [9]. The

7

2. Theory

complexity of the search grows with increasing search space dimensionality and real-time
planning further contribute to the difficulty of the problem [29].

2.3. Control Space Sampling

The information about connectivity of the sampled state space is called the lattice [30]. The
lattice introduces parameter constraints according to the given vehicle model and deter-
mines the interconnection between discrete states of the search space i.e. it makes sure that
every action taken at the particular state is feasible for the robot.

Figure 2.1.: Expansions of the control set in best-first order [30].

Lattice’s structure is defined by robot’s control system i.e. it’s agility. Knowing the
control system parameters one can compute a lattice i.e. a set of feasible motions to satisfy
the requirements of the given problem [29]. A major advantage of such approach is off-line
computation of the motion primitives (actions) that means it does not affect the runtime of
the deterministic search algorithm, which is very important since the contingency planner
introduced in this paper is time critical [30]. An example of the state lattice control set is
shown in figure 2.1 .

2.4. Best-First Heuristic Search

After state and control space are defined, an actual path finding sequence shall be initiated.
The planning is formulated as a search problem on a graph that is generated from a given
state space.

8

2.4. Best-First Heuristic Search

There are classical graph search algorithms like Dijkstra and A* that are proven to be
effective for many applications. However, since A* is an informed search i.e. has prior
information about the search domain, it is able to search towards most promising states of
the graph, that would eventually lead to a smaller computational effort [9].

2.4.1. A* Search

Let us define a set of all possible states S in some finite discrete state space where the A*
computes a path from the initial state sstart ∈ S to the goal state sgoal ∈ S. At each step
A* considers two estimates of the state. First, the estimate of the path cost g(s) from the
initial to the current state. Second, a heuristic estimate of the cost to the goal h(s) from the
current to the goal state. Both estimates define a total cost of the state and introduce an
evaluation function [15]:

f(s) = g(s) + h(s), s ∈ S (2.2)

The heuristic h(s, sgoal) usually underestimates the path cost to the goal and is used to fo-
cus the search [9]. Before the search starts all states are initialized to g(s) =∞,∀s ∈ S. The
search then begins with setting g(sstart) = 0 and add the sstart to the OPEN list. The OPEN
list is a data structure that holds all states that are to be explored by the algorithm, that is
also known as the frontier. A* pops a node with the lowest f value from the OPEN list and
explore it by generating successors. The explored state is then added to the CLOSED list
and the OPEN list is updated by adding previously generated successors that are satisfy-
ing the equation:

g(s) + c(s, s′) < g(s′), s ∈ S (2.3)

Where c(s, s′) is the transition cost from the current state s to the successor state s′, and
g(s′) is the cost of the successor state. The CLOSED list is a data structure that holds all
previously explored states and when the successors are generated is first checked if none
of them are in the CLOSED list already. The search ends when the algorithm pops the goal
state from the OPEN list.

To satisfy the optimality criteria the heuristic h(s) of the search should be admissible,
which means it should be less or equal than the actual cost from the current state s to the
goal state sgoal i.e. it underestimates the cost to the goal [15]. A slightly stronger definition
is consistency, where:

h(s) ≤ c(s, s′) + h(s′) (2.4)

Every consistent heuristic is also admissible.

9

2. Theory

2.4.2. Anytime Weighted A* Search

In many applications optimal search is not required. Moreover, it is often infeasible e.g.
in real-time algorithms when the solution has to be found in a very limited time frame.
Anytime algorithms are used instead to satisfy the constraints provided by the peculiar
properties of the problem [14]. Basic idea of anytime search is to compute a suboptimal
solution in a given time frame, and proceed to the optimal solution if there is still time
left. One of the drawbacks of anytime algorithms is that they do not provide a bound for
sub-optimality of the algorithm. However, [24] introduces an algorithm that is capable of
providing such bound and eventually guarantee an optimal solution.

The algorithm is called Anytime Repairing A* (ARA*). The main difference to standard
A* is a so called inflated heuristic that overestimates the cost to the goal by a factor of
inflation coefficient ε. The evaluation function then becomes:

f(s) = g(s) + ε ∗ h(s), ε > 1, s ∈ S (2.5)

Please note that the heuristic is not admissible anymore. The inflation factor ε is a bound
on sub-optimality of the algorithm, meaning that the first solution found will be close to
optimal by the ε factor. The more heuristic is inflated, the more the cost to the goal is over-
estimated and the search becomes depth-first [14]. Utilization of inflated heuristic proves
to find a slightly less optimal solution much faster than regular admissible heuristic finds
an optimal solution, that pays off for complex problems [24].

The ARA* algorithm is executing A* with inflated heuristic multiple times, starting with
large ε and decreasing it’s value with every execution until ε = 1 (classic A*). Running a
search from scratch at every iteration would be very computationally expensive, thus the
ARA* reuses the results of previous iterations. Due to inconsistent heuristic of ARA* there
might occur re-expansions of states, however it has been shown [24] that restricting the
states to be expanded not more than once still provide a sub-optimality bound ε. Therefore,
nodes that has been expanded at previous iterations are simply ignored and not inserted
into the OPEN list. This allows ARA* to avoid redundant computations and converge to
the optimal solution while finding sub-optimal solution on the way.

2.5. Parallel Best-First Heuristic search

Computer processor development is moving towards multi-core architectures, thus, algo-
rithms and software has to be modified in order to exploit the power of modern CPUs.
Parallelization of deterministic heuristic search algorithms is a challenging problem that
arise in many applications. Nevertheless, there is no general parallelization approach that
would work for any given problem [21]. Usually, parallel search techniques can be catego-
rized according to lists structures (OPEN and CLOSED lists) and utilized memory archi-
tecture (shared or distributed memory).

10

2.5. Parallel Best-First Heuristic search

2.5.1. Shared lists

The most basic approach on best-first search parallelization is to have OPEN and CLOSED
lists stored in shared memory. All threads are accessing same memory space at the same
time while managing states inside shared lists, that makes it necessary to use locking to
restrict list access for only one thread at a time [18]. Since shared lists are updated after
each expansion step, such method introduces a significant synchronization overhead by
forcing threads to compete for the list access.

Synchronization overhead is also caused by multiple state re-expansions introduced by
a parallel search nature. Standard A* never expands the state more than once because
during expansion node’s g value is guaranteed to be optimal. However, this rule does
not hold when the expansion step is done in parallel and several items of the OPEN list
are expanded simultaneously. In this case the search expands states with suboptimal g
values and some of them might be re-expanded later during the search. In another words,
a particular thread finds shorter (optimal) path to a state that has already been expanded
by another thread, so that this state has to be expanded more than once [28]. This effect
increases the load on the OPEN list, that causes even more synchronization overhead. Due
to this fact, even a sequential version of A* can outperform such parallelization approach
for a certain set of problems [3].

2.5.2. Private lists

This strategy implies possession of private lists for each thread that manages expansions.
Though, communication is still required to distribute successors evenly among all threads
to maintain load balancing. However, a communication overhead due to states distribu-
tion is much less compared to shared lists strategy [20]. States distribution is usually done
by introducing a problem specific hash function, that assigns a thread index to a particular
node. This assignment can either attempt to balance the load as much as possible, or par-
tition the search space according to some problem specific parameters [21].

Private lists are normally chosen as a technique for distributed memory architectures
and utilization of Message Passing Interface (MPI), however, it is also possible to use
shared memory architecture with a proper memory access management. [19].

2.5.3. Bottlenecks

There exist a number of parallel best-first search strategies that were developed for differ-
ent kind of problems [28][19][3]. Some of them claim to be effective only for path planning
while others might be much better for puzzle solving. Unfortunately, there is no universal
method that would effectively parallelize any given search problem.

To build a feasible parallelized search, first thing that should be considered is memory
architecture of the system were the search is supposed to be executed. Often, path com-
putation is performed on board of a robotic system that might have specific software or
hardware architecture, and probably limited access to dedicated frameworks and libraries.

11

2. Theory

Second, the sequential search algorithm shall be analyzed for the state space structure,
problem size, computational cost etc. Careful evaluation of search properties and given
computer system allows choosing a best fitting strategy that would eventually lead to a
successful parallelization attempt. Ideally a parallel version of A* has to overcome the
following challenges:

• Load balancing

• State re-expansions

• Syncronization overhead due to list access

Keeping these in mind and considering path planning problem together with the given
computer architecture we will have to choose a parallelization scheme that would suite
the requirements of the multi-agent contingency planner.

2.6. Problem Statement

One of the existing planners developed in DLR computes an emergency breaking path to
zero velocity and provides a solution within of 0.1 seconds margin, which is a threshold
for computational runtime [6]. It was planned to continue the development of such plan-
ning algorithms, including multi-agent planners, with increased accuracy and efficiency
that requires higher computational capabilities.

This work is intended to develop a number successful parallelization schemes for a set
of path planners (single and multi-agent), study it’s behavior and embed it into DLR’s
development environment. To exploit the effect of parallelization, this thesis introduces a
cooperative (two-agent) contingency planner that has similar architecture as [6], but now
planning is done for two vehicles. This planner represents a more complex search problem
in higher dimensional domain to which we apply two parallelization techniques (chapter
8 , chapter 9).

12

Part II.

Vehicle and Environment Models

13

3. Motion Primitives

This chapter introduces a dynamic vehicle model based on Dubin’s curves [23]. The mo-
tion primitives that will define a state lattice control set, will be generated according to this
model.

3.1. Kinematic Vehicle Model

The model is defined by the following kinematic equations:

dx
dt = Vxcos(θ)
dy
dt = Vxsin(θ)
dθ
dt = VxK
dVx
dt = Ax
dAy

dt = C

K = Ay/V
2
x

(3.1)

Where x and y are spacial coordinates, Vx, Vy and Ax are velocities and accelerations
along the axes, C is a constant, K = 1/R is the curvature and θ is an orientation angle [6].
The illustration of the model is given in figure 3.1 .

Figure 3.1.: Dubin’s car model. R - curvature radius; L - vehicle length; φ - steering angle;
θ - orientation angle; x, y - local coordinate system.

15

3. Motion Primitives

3.2. Constraint Graph

Since a real vehicle has physical constraints e.g. maximum braking acceleration, maximum
speed, steering angle etc. these constraints should be considered by the vehicle model. The
following set of constraints shall be used [6]:

0 ≤ Vx ≤ 30

−7.8 ≤ |Ay max| ≤ 7.8

Ay ≤ |Kmax|Vx
(3.2)

The first constraint in equation 3.2 is longitudinal velocity with the maximum value
of 30 [m/s] [6]. The second constraint is a bound of vehicle’s lateral acceleration. The
threshold value comes from the traction circle equation [27]:»

F 2
x + F 2

y ≤ F»
A2
x +A2

y ≤ µg
(3.3)

Where µ is a traction coefficient and g is a gravitational constant. This work assumes
that the traction coefficient µy has much greater impact on the resulting traction than µx,
thus the µx can be discarded for the simplicity of the model. The equation 3.3 becomes:

Ay ≤ µg (3.4)

This is a constraint equation that provides a value for maximum reachable lateral accel-
eration according to the traction coefficient. In this paper the traction coefficient is chosen
at the value µ = 0.8 as the most average one, that results in |Ay| = 7.8 [m/s2].

Figure 3.2.: Constraint graph that is used for motion primitives generation.

The third constraint of equation 3.2 is the curvature. Using the maximum value of
the steering angle φ = π/4 and the wheel base length of the vehicle L = 2.7[m] one can
compute the maximum curvature value:

16

3.3. Trajectory Curves

Kmax ≤
tan(φmax)

L
≈ 0.37 (3.5)

This is later used in equation 3.1 . Physically, the curvature constraint denotes that at
lower velocities certain lateral accelerations are not available anymore. An interval en-
closed by all physical constraints of the car (equation 3.2) is discretized with respect to Ay
and Vx. The discretization introduces a state space sampling (chapter 2) or a constraint
graph where every vertex represents a state of the vehicle (figure 3.2). A transition from
one discrete vehicle state to another is done through a graph edge and called a motion
primitive i.e. a trajectory with certain initial and final parameters.

3.3. Trajectory Curves

In order to build up a trajectory curve that is connecting two discrete states, few more
assumptions shall be inserted into the vehicle model of equation 3.1 :

Ax = sign(Vx1 − Vx0)
»
µ2g2 −max(|Ay1|2, |Ay0|2)

∆t = V1−V0
Ax

dAy

dt =
Ay1−Ay0

∆t

A2
y + (Vx1−Vx0)2

∆t2
≤ µ2g2

0.5 ≤ ∆t ≤ 2.5

(3.6)

First formula in equation 3.6 provides an estimation of a longitudinal acceleration us-
ing a traction circle, that is later used to compute the duration of the state transition ∆t
(time that vehicle requires to cover the distance of motion primitive). The model assumes
that the lateral acceleration is changing linearly with the state transition. Also, equation
3.6 introduces one more constraint for the trajectory duration. The lower bound makes
sure that state transitions differ enough from each other and the upper bound eliminates
unsafe long trajectories [6]. Since this work is dedicated to contingency trajectory planners,
velocity of the vehicle is always decreasing along the trajectory curve. This means that the
difference between initial and final longitudinal velocity ∆Vx = Vx1 − Vx0 will always be
negative i.e. sign(Vx1 − Vx0) < 0.

Satisfying equation 3.2 , equation 3.6 and solving the system in equation 3.1 provides
a solution for state transitions in (x, y) coordinates. The illustration in figure 3.3 shows
the evolution of vehicle’s state progressing through the constraint graph (sampled state
space). The corresponding discrete trajectories are shown in figure 3.4 . The introduced
model is used to compute motion primitives with required constraints for every state in
the constraint graph. All motion primitives are computed off-line, meaning that it is not
affecting the runtime of path planning.

17

3. Motion Primitives

Figure 3.3.: State transitions on the constraint graph; half-ellipses denote time constraints
from equation 3.6 ; 1 - initial state with the highest velocity; 2 - 4 - progressing
through the graph to the zero velocity and lateral acceleration.

Figure 3.4.: A combination of discrete trajectories in (x, y) coordinates; numbers 1-4 corre-
spond to plots at figure 3.3 .

18

3.4. Trajectory Enclosure Region

3.4. Trajectory Enclosure Region

During path planning discrete trajectories computed with the model of equation 3.1 have
to be checked for collisions against obstacles and road boundaries. Since a car has real
physical dimensions, a trajectory curve of the vehicle’s center of mass transforms to an
enclosure region in three dimensions:

g(x, y, t) ≤ 0 (3.7)

There are different ways to define an enclosure set. This work utilizes OBB trees that
provide a balanced solution both in computational effort and enclosure region resolution
[12]. OBB tree model is depicted in figure 3.5 and figure 3.6 .

Figure 3.5.: OBB tree structure.

Figure 3.6.: OBB tree levels; numbers 1-3 correspond to tree’s depth; rectangles A-B denote
schematic enclosure of car’s real physical boundaries (thick stripe).

19

3. Motion Primitives

Each generated motion primitive is provided with the corresponding OBB tree that de-
fines it’s physical boundary. An example of real enclosure region of vehicle’s motion primi-
tive is shown in figure 3.7 . Motion primitives also evolve in time that is considered during
collision checking.

Figure 3.7.: An example of the motion primitive with OBB tree enclosure; an OBB is pre-
sented on maximum tree’s depth of 3.

20

4. State Space

After defining a vehicle model and generating motion primitives in chapter 3 , this chapter
proceeds with building a state space for the heuristic search.

4.1. Single-Agent Planner State Space

As observed on figure 3.5 , every state is defined by lateral acceleration Ay and longi-
tudinal velocity Vx. State transitions i.e. motion primitives are represented as curves in
(x, y, t,Θ) space, where Θ is a global direction angle. Thus, according to the model of
equation 3.1 , the state space of the planner should have six dimensions:

si(x, y, t,Θ, Ay, Vx) ∈ S, i = 1...n, si ∈ R6 (4.1)

Where S is a set of all discrete states satisfying the constraints provided by equation 3.2
and n is a number of discrete states. Every state si have a unique set of associated motion
primitives computed as transitions to other states in the graph at figure 3.2 , assuming they
are satisfying trajectory duration constraints in equation 3.6 . Such approach generates a
tree of motion primitives in (x, y) space.

Figure 4.1.: Schematic representation of a single agent search tree with non-fixed branching
factor and six-dimensional nodes; possible solution is shown in green.

21

4. State Space

This tree is a six dimensional discretized state space that is well suited for determinis-
tic search algorithms. Tree’s branching factor is varying depending on the current vehicle
state and space discretization resolution (figure 3.2). A schematic representation of such
search tree is presented in figure 4.1 .

A state space of equation 4.1 is used in [6] for single vehicle contingency planner algo-
rithm that is further extended for cooperative (multi-agent) planning later in this work.

4.2. Multi-Agent Planner State Space

Since this work is focused on cooperative path planning, one should define a proper search
space that is able to consider multiple agents (vehicles). Using the results from chapter 3
we will build a state space suitable for multi-agent planning.

4.2.1. States Combination Node

There are many techniques used for multi-agent search [7]. However, almost all of them
can be classified in two categories - centralized and distributed. With the distributed ap-
proach each agent runs it’s own independent search algorithm on private state spaces and
when the goals are found, the paths are corrected accordingly, making sure that there oc-
curs no conflicts (collisions) between agents [13] [26]. Centralized approach utilizes only
one search algorithm for all agents and corrects every search step with regard to mutual
collision avoidance during the runtime of the algorithm [7]. Latter method uses shared
state space between agents and requires higher computational power since it considers all
possible state combinations for a given number of agents. Nevertheless, this paper is go-
ing to use centralized approach for it’s better suitability for a problem of vehicle trajectory
planning with a given constraints of the model and hardware (see chapter 6).

Considering that every agent is associated with a certain initial discrete state and a set of
successor states, a cooperative planner has to take into account every combination of suc-
cessors to make an optimal decision at a current search step. This means that a cooperative
state space will have states as a union of agent’s states e.g.:

scoopi i = s1
i ∪ s2

i ∪ ... ∪ smi , i = 1...n, j = 1...m (4.2)

Where m is a number of agents. In general, for an arbitrary number of agents it is re-
quired to find an n-fold Cartesian product of all successor state vectors, that will provide
all possible combinations of outgoing trajectories. For instance, if there are three agents
and each generates four successors states, all possible combinations can be written in an
array of 3-tuples.

22

4.2. Multi-Agent Planner State Space

4.2.2. Computational Demands

Introduced strategy on cooperative planning increases the branching factor of a search tree
exponentially with the increasing number of agents. Taking into account that a state space
for a cooperative planner should operate in six dimensions and computational require-
ments of a centralized multi-agent approach (exponential growth of a branching factor),
we will construct a state space for only two agents that will be enough to satisfy a stated
goal of this thesis (chapter 1), since two-agent search is already enough to introduce a
computationally demanding path planner algorithm for further parallelization. An illus-
tration of a two agent search space is depicted in figure 4.2 .

Figure 4.2.: Multi agent search tree; each node contains two vehicle states of six dimen-
sions; branching factor is squared compared to a single agent search tree; M
- index of a ”master” vehicle, S - index of ”slave” vehicle; possible solution is
shown in green.

Essentially, a cooperative (two agent) search space is the same tree with non-fixed branch-
ing factor, however each node of this tree now holds two vehicle states. Due to centralized
multi-agent strategy, only one vehicle will perform path computation. Therefore we will
refer to those vehicles as ”master” - computes path, and ”slave” - recieves computed tra-
jectory (see figure 4.2 and equation 4.2).

scoopi = sMi ∪ sSi ∪, i = 1...n (4.3)

An introduced vehicle model (chapter 3) provided a continuous space discretization
technique that allowed to build a search space for a cooperative path planner. Despite
the fact that chosen model of a search space (equation 4.2) is not optimal in terms of
computational effort, it has some significant benefits for the given planning problem de-

23

4. State Space

scribed in chapter 1 . Since multi-agent search strategy is centralized, there is required no
communication between agents that is a major advantage for the real world application.
Radio transmission communication between vehicles (agents) deliver decent delays com-
pared to the overall planning time, which makes a distributed multi-agent search strategy
infeasible due to communication overhead.

24

Part III.

Path Planners

25

5. Contingency Planner

This chapter provides a brief introduction to a single agent contingency planner that was
developed by DLR in 2015 [6] and is later extended to a cooperative planner (chapter 6).
A contingency planner is intended to compute an emergency breaking trajectory so that it
stops as soon as possible while not crossing the road boundaries and hitting road obstacles
(e.g. other cars). This planner operates in a single agent discrete state space from chapter
4 with 16× 9 discretization grid on a constraint graph (for Vx and Ay respectively).

5.1. Heuristic

The planner uses anytime search algorithm that with inflated heuristic and deliver subop-
timal solutions before converging to the optimal one (equation 2.5) [24]. Since an optimal
solution is often not required for path planners, this approach allows significantly reduc-
ing the planning time [14]. Planner’s goal is to find zero velocity state while avoiding
collisions on the way, therefore the following heuristic function was chosen:

h(s) = Vx/Amax (5.1)

Where Vx is velocity in the direction of curve tangent and amax is an absolute value of
maximum acceleration defined by equation 3.2 . The cost from the initial to the current
state g(s) is defined by the duration of state transitions ∆t i.e. motion primitives (see
equation 3.6). Anytime search utilizes inflated heuristic (equation 2.5) which means
that the cost to the goal is always overestimated and the search becomes more depth-first
oriented. Initially, the inflation coefficient ε ≥ 1 is chosen arbitrary, but after the first
solution is found, gets recalculated according to:

εnew = min
si∈S

(εold,
f(ssln)

fmin(si)
), ∀si ∈ S, i = 1...n (5.2)

Where si is a state in the OPEN list, εold is a previous inflation coefficient value, f(ssln)
is the non-inflated cost of the solution and fmin(si) is a minimum non-inflated cost of the
state among all states in the OPEN list. Anytime algorithm converges to classical A* with
every newly found solution according to the decrease of inflation coefficient.

5.2. Planning Sequence

At first algorithm loads a precomputed set of motion primitives and parses the environ-
ment representation from the simulator that contains vehicle positions and road coordi-
nates. Afterwards, the search is initialized by setting a number of default constants and

27

5. Contingency Planner

generating a root node with the initial parameters of the ego vehicle that are defined by
a simulator (algorithm 1). Note that the velocity of ego vehicle provided by a simulator
is continuous, meaning that it has to be fitted into a closest possible discrete state of the
constraint graph figure 3.2 . Therefore, the discretization grid of lateral acceleration and
longitudinal velocity has to be fine enough to minimize this discretization error. The root
node is then added to the OPEN list and the search sequence is started. Since at this mo-
ment the OPEN list contains only one state (root node), the planner expands this node in
order to generate successors. A set of successors is defined by two parameters of the state
Ay and Vx that determine a node of the constrain graph figure 3.2 . Note that OPEN and
CLOSED lists are heap data structures meaning that list ordering according to the f value
is done automatically when the state is added to the list [5].

Algorithm 1 Initialize Planner Instance

function prepeareSearch():

// Read input files
graph = Graph("MotionPrimitives.csv")
planner = Planner("Single-Agent")
envRep = Environment("Scenario.xml")
planner.setDefaultParameters()

// Generate root node
rootNode = envRep.getRootNode()
OPEN.push(rootNode)

5.2.1. Exploration

Exploration means evaluating successors of the given state. Search object reserves memory
and assigns values of f , g and h for the generated successor and also updates it’s value of
fmin(si) that is later used to update the inflation coefficient. Each generated node is then
added to the OPEN list (evaluateState function in algorithm 2).

5.2.2. Expansion

After successors evaluation is complete, the search picks a state with the lowest f value
from the OPEN list. Prior to be expanded the node is examined to be inside the CLOSED
list and safety verified by checking trajectory collisions against obstacles and road bound-
aries. If all checks are successful, the state is expanded i.e. generates successors (algorithm
2). The node is also checked if the expanded node is a goal node. If this holds, the search
stops, inflation coefficient gets updated and OPEN list is being reordered. If there are still
nodes to explore (OPEN list not empty), the search is going to continue with the updated
evaluation function. In any case the expanded node is being added to the CLOSED list.
Search results that has been found within the given time frame are written to the SOLU-

28

5.3. Example

TIONS array. Nodes whose trajectories are intersecting with obstacles or ones that have f
value above maximum, are being added to the DISCARDED list.

Algorithm 2 Search Step

function executeSearchStep(node):

// Expand
if node.getF() > fmax:

return False
elif planner.collisionRoadObstacle(node):

return False
elif node.isGoalNode():

fmax = fsol
planner.updateEpsilon(node, fmin)
SOLUTIONS.push(node)
CLOSED.push(node)
OPEN.reorder()
return True

else:
children = graph.generateChildren(node)

// Explore
for child in children:

planner.reserveMemoryForState(child)
planner.evaluateState(child)
planner.updateFmin(child)
if child.getF() < fmax:

OPEN.push(child)

// Successful Search Step
return True

5.2.3. Collision Detection

Every motion primitive that is chosen to be expanded has to go through a safety verifica-
tion check. This is done by examining an intersection of the motion primitive’s trajectory
enclosure region (chapter 3) with road obstacles and boundaries (collisionRoadObstacle
function in algorithm 2).

5.3. Example

Planner routine implementation is done by algorithm 3 . The search terminates if all states
were explored before the time horizon. A solution is a node with zero absolute velocity

29

5. Contingency Planner

from where the full path to the initial node can be restored. Resulting path represents
a set of connected motion primitives that form a continuous closed six-dimensional set
equation 4.1 . An example of contingency planner solution is shown in figure 5.1 .

Figure 5.1.: Contingency planner example solution trajectory (algorithm 3)

Algorithm 3 Contingency Planner Path Computation

function computePath():

// Initialize and generate root node
prepeareSearch()

// Search sequence
while searchTime < timeHorizon:

// Check if the frontier is not empty
if OPEN.notEmpty():

node = OPEN.pop()
if CLOSED.contains(node) or DISCARDED.contains(node):

continue
if executeSearchStep(node):

CLOSED.push(node)
else:

DISCARDED.push(node)
else:

return

Contingency planner with precomputed set of motion primitives finds optimal or sub-
optimal solutions within a time frame of 0.1 seconds. In the next chapter are we going to
build a contingency planner extension that would perform two agent path planning.

30

6. Cooperative Contingency Planner

This chapter introduces a two-agent contingency path planning algorithm that utilizes a
state space from section 4.2 and the same set of motion primitives from chapter 3 for
each agent of the system.

6.1. Modification to the Contingency Planner

The main difference between a standard single agent planner and a cooperative contin-
gency planner is that each node now holds two vehicle states. All possible successor state
combinations can be obtained by a Cartesian product of two successor sets (figure 6.1).

Figure 6.1.: An example of discrete states combination; M1-5 (green cells) denote succes-
sors of the master vehicle state and S1-3 (blue cells) - successors of the slave
vehicle state; table body (yellow cells) denotes all possible successors of the
cooperative node.

Since a centralized multi-agent search strategy was chosen (section 4.2), path compu-
tation will be performed by only one vehicle. We will refer to a vehicle that calculates a
path as a master vehicle and the second one as a slave vehicle. The idea of centralized
planning for two agents is to minimize the expensive communication between real cars
through a radio channel. As it was noted before, a method of centralized multi-agent path
planning significantly increases a branching factor of a search tree. However, there are
few techniques that allow minimizing this effect during successors generation process (see
subsection 6.2.1).

6.2. Planning Sequence

The execution order of two-agent planner is not much different from the one presented in
section 5.2 , however the process of nodes creation and evaluation is very particular. Let us
define sm as a current state of the master vehicle and ss as a current state of a slave vehicle.

31

6. Cooperative Contingency Planner

Discrete states of each vehicle are exactly the same as ones that were used for a single ve-
hicle planner i.e. si(x, y, t,Θ, Ay, Vx). Generating one cooperative state of the search space
requires both sm and ss discrete states (see algorithm 4 root node generation).

Algorithm 4 Initialize Cooperative Planner Instance

function prepeareSearch():

// Read input files
graph = Graph("MotionPrimitives.csv")
planner = Planner("Multi-Agent")
envRep = Environment("Scenario.xml")
planner.setDefaultParameters()

// Generate root node
masterRootNode = envRep.getMasterRootNode()
slaveRootNode = envRep.getSlaveRootNode()
rootNode = CoopNode(masterNode, slaveNode)
OPEN.push(rootNode)

6.2.1. Advanced Node Generation

State combination nodes are required to be generated, thus there shall be introduced a cer-
tain algorithm that computes a Cartesian product for the given discrete successor states.
Before computing a Cartesian product one has to generate successors for both agent’s
states separately. To minimize the number of combined successor nodes (i.e. coopera-
tive states), the algorithm first checks the intersection of enclosed motion primitives (OBB
trees) with obstacles and road boundaries for each agent (algorithm 6). This early assess-
ment allows significantly reduce the number of state combinations since many individual
motion primitives will be discarded due to this check. Note that generated nodes (individ-
ual or cooperative) preserve parent-child relationship that makes it possible to restore the
final solution path individually for each vehicle.

6.2.2. Node Assessment

Evaluation process of cooperative nodes has to provide a valid estimate for the search
heuristic and evaluation function. For this purpose it has been decided to use averaged
values of both master and slave states:

h(scoop) = (h(sm) + h(ss))/2

g(scoop) = (g(sm) + g(ss))/2

f(scoop) = (f(sm) + f(ss))/2

(6.1)

32

6.2. Planning Sequence

A cooperative node is considered to be a goal node if both master and slave are goal
states (i.e. have zero absolute velocity). If only one of two vehicles has reached the goal
state at a particular search step, the search is going to continue only for the moving one,
while other vehicle will be assigned a zero-to-zero transition node (algorithm 5).

Algorithm 5 Cooperative Planner Search Step

function executeSearchStep(coopNode):

// Expand
if coopNode.getF() > fmax:

return False
elif planner.mutualTrajIntersection(coopNode):

return False
elif coopNode.isGoalNode():

fmax = fsol
planner.updateEpsilon(coopNode, fmin)
SOLUTIONS.push(coopNode)
CLOSED.push(coopNode)
OPEN.reorder()
return True

else:
children = graph.generateCoopChildren(coopNode)

// Explore
for child in children:

planner.reserveMemoryForState(child)
planner.evaluateState(child)
planner.updateFmin(child)
if child.getF() < fmax:

OPEN.push(child)

// Successful Search Step
return True

6.2.3. Mutual Collision Detection

Another important difference to the standard contingency planner (chapter 5) is that
cooperative successor trajectories have to be also examined for mutual intersection. The
process is identical to collision detection for obstacles and road boundaries, however in
this case both OBB’s of vehicle’s successor state pair are checked against each other. If this
check fails, the search discards this node and proceed with the next one that has a lowest
f value. As trajectories may have varying durations, each motion primitive has to be
checked not only against the currently investigated maneuver of the cooperation partner,
but also against all previous maneuvers in the search tree, which overlap in time. This

33

6. Cooperative Contingency Planner

is necessary to avoid collisions between vehicles in cases when motion primitives with
similar spacial coordinates and time boundaries occur at different tree levels (algorithm 7
). An illustration of such example is shown in figure 6.2 .

Figure 6.2.: Illustration of possible motion primitives intersection within distinct tree lev-
els; to handle such cases mutual collision checking is implemented for motion
primitives that are overlapping in time.

Algorithm 6 Successors Generation with Cartesian Product

function generateCoopChildren(coopNode):

// Generate individual successors
mChildren = graph.generateChildren(coopNode.masterNode())
sChildren = graph.generateChildren(coopNode.slaveNode())

// Cartesian product
for mChild in mChildren:

if planner.collisionRoadObstacle(mChild):
continue

for sChild in sChildren:
if planner.collisionRoadObstacle(mChild):

continue
coopChildren.push(CoopNode(mChild, sChild))

return coopChildren

6.3. Example

A cooperative planner computes two suboptimal (converging to optimal for unlimited
time frame) trajectories that are safe from colliding with each other and surrounding en-
vironment (algorithm 2). An example of cooperative contingency planner solution is

34

6.3. Example

presented in figure 6.3 .

Figure 6.3.: Cooperative planner solution example; intersection region is not overlapping
in time, even though it seems that trajectory enclosure sets are intersecting.

Algorithm 7 Mutual Trajectory Intersection Check

function mutualTrajIntersection(coopNode):

// Get individual states
mNode = coopNode.masterNode()
sNode = coopNode.slaveNode()

// Determine fixed node
if mNode.getT() > sNode.getT():

fixedNode = mNode
floatingNode = sNode

else:
fixedNode = sNode
floatingNode = mNode

// All nodes that are intersecting in time with the fixed node
nodesToCheck = fixedNode.intersectInTime(floatingNode)

// Check intersections
for node in nodesToCheck:

if node.is IntersectingWith(fixedNode)
return True

return False

35

6. Cooperative Contingency Planner

36

Part IV.

Best-First Search Parallelization
Applied to Path Planning

37

7. Parallelization Strategy

In chapter 6 we introduced a computationally demanding two-agent path planning al-
gorithm that is intended to find emergency breaking trajectories for two vehicles. This
cooperative planner has been created as an example of a complex path planner with com-
putationally expensive expansions that should benefit from parallelization. Considering
a theoretical background on heuristic search parallelization presented in chapter 2 , this
chapter will reason the choice of parallelization schemes applied in chapter 8 and chapter
9 .

7.1. Software Environment Limitations and Memory
Architectures

All algorithms developed in this work were implemented in DLR’s software environment
called Dominion (Visual Studio 2010 Project), that simulates roads, vehicles and their prop-
erties. It also includes a number of interface classes for implementation of distinct path
planners. Working in this environment puts some restrictions on utilization of specific li-
braries and classes e.g. for the development of a new path planner one must use provided
interface classes. Furthermore, in case attaching additional frameworks or libraries to
the Dominion requires fastidious dependency analysis, since some modules of the project
might cause conflicts with new ones.

In this regard, attaching MPI (Message Passing Interface [1]) to the Dominion would
be extremely difficult due to compiler differences. This fact encourages us to use shared
memory architecture instead of distributed memory. There are two main multi-threading
APIs for the shared memory architectures:

• POSIX Threads [2]

• OpenMP [32]

Both are powerful tools for parallel programs development. However, OpenMP pro-
vides less control when it comes to memory management due to pragma based syntax
[22], that also makes it difficult to control the program execution when several classes and
sources are involved.

Despite the complexity of POSIX threads, they provide the required robustness, flexi-
bility and full control of memory [22]. Moreover, pthreads module was already included
to the Dominion environment, that made it an ideal parallel computing tool to use under
certain limitations of the project.

39

7. Parallelization Strategy

7.2. Lists Structures

To determine which list structure (shared of private) would fit better for the introduced
planner, one has to evaluate the state space of the search. As we have already observed
in chapter 4 , the state space of the planner is a tree with a big branching factor (tens and
hundreds successors). Note that the given problem is not a general graph search plan-
ning, thus some properties or restrictions of best-first search parallelization might not be
applicable anymore. For instance, state re-expansions due to expanding nodes with sub-
optimal g values. Since in the tree search each node generates a unique set of successors,
re-expansion does not occur, thus, we can consider using a standard parallelization scheme
[18] with the shared OPEN and CLOSED lists chapter 8 . Though this approach still has
drawbacks like significant synchronization overhead, it also has some advantages like rel-
ative simplicity.

Since this work tries to find an optimal parallelization scheme for path planning rou-
tines, it would be interesting to try out another approach that deviate from classical tech-
niques for shared memory architectures. Therefore, hash-distributed approach ([20][8])
that utilizes private lists, was chosen. Such scheme is usually used for distributed mem-
ory architectures. However, with the correct memory distribution it can be realized in the
shared memory environment. Advantages of this scheme are less synchronization over-
head on the list access and flexibility in terms of the hash function choice (load balancing
and domain distribution).

40

8. Parallel A* Planner

This chapter describes a standard parallelization approach for the A* search described in
[18] and [28].

8.1. Algorithm Overview

The operation principal of parallel A* is based on dynamic task assignment during search
execution. Threads take turns removing states with the lowest f value from the OPEN list
by locking it. Then the states are expanded in parallel and successors that were generated
by each thread are added to OPEN list. As soon one of the threads finishes state expansion
it waits for the OPEN list to be unlocked and takes the next state to expand. Note that
OPEN and CLOSED lists are shared between all threads which means that any list access
should be locked in order to avoid concurrent read/write inconsistency.

For this parallel search strategy one may expect significant synchronization overhead
due to thread execution locking. Introduced cooperative search problem (chapter 6) uti-
lizes a tree with the large branching factor as a state space representation that result in
thousands of successors generated at every search step. Such load on the shared lists
will have a great impact on algorithm performance, therefore we will attempt to structure
search implementation in such a way that this load will be minimized.

8.2. Planner Architecture

Algorithm starts by initializing a planner instance and adding root node to the OPEN list.
Afterwards, the threads are allocated and each thread is given a pointer to the planner
instance and a unique thread ID. After initialization is done, threads start to compete for
states in the OPEN list. Since at the first search step OPEN list contains only the root node,
it will be expanded by one thread while others remain idle.

As it was mentioned before, shared lists have to be locked in order to maintain consis-
tent access. Each list (i.e. OPEN - the frontier; CLOSED - expanded states; DISCARDED -
states discarded due to large f value or detected collisions) possess it’s own mutual execu-
tion lock (pthread mutex t type) that only allows accessing the list for one thread at a time.

Before a thread generates successors, safety verification checks shall be executed (i.e.
collision detection). For the sequential planner motion primitives generation implies gen-
erating an OBB tree (chapter 3) that is later used for safety examination by checking
the intersection region of the OBB enclosure with road obstacles. Since a parallel version

41

8. Parallel A* Planner

of the algorithm may access the same OBB tree from different threads, there should be a
mechanism to avoid concurrent read of the OBBs.

Algorithm 8 Cooperative Planner Parallel Path Computation (PA*)

function computePathParallel():

// Initialize and generate root node
prepeareSearch()
allocateThreads(numThreads)

// Search sequence
while searchTime < timeHorizon do in parallel:

// Lock OPEN list
lock(OPEN)
if OPEN.notEmpty():

coopNode = OPEN.pop()

// Unlock OPEN list
unlock(OPEN)

// Execute search step in parallel
if CLOSED.contains(coopNode) or

DISCARDED.contains(coopNode):
continue

if executeSearchStepParallel(coopNode, threadID):
lock(CLOSED)
CLOSED.push(coopNode)
unlock(CLOSED)

else:
lock(DISCARDED)
DISCARDED.push(coopNode)
unlock(DISCARDED)

else:
// Unlock OPEN list
unlock(OPEN)
if explorations(threadID) > 0

finishThreadExecution(threadID)

Instead of using another mutual execution lock, the search holds copies of OBB trees for
each motion primitive. The number of copies should be equal to the number of threads
times the number of search agents (i.e. two). In this case memory consumption is not very
significant due to a relatively ”lightweight” and simple OBB tree implementation in the
Dominion environment (chapter 7).

42

8.2. Planner Architecture

Algorithm 9 Cooperative Planner Parallel Search Step (PA*)

function executeSearchStep(coopNode, threadID):

// Expand
if coopNode.getF() > fmax:

return False
elif planner.mutualTrajIntersection(coopNode, threadID):

return False
elif coopNode.isGoalNode():

lock(CLOSED)
fmax = fsol
planner.updateEpsilon(coopNode, fmin)
SOLUTIONS.push(coopNode)
CLOSED.push(coopNode)
unlock(CLOSED)

lock(OPEN)
OPEN.reorder()
unlock(OPEN)

return True
else:

children = graph.generateCoopChildren(coopNode, threadID)

// Explore
for child in children:

planner.reserveMemoryForState(child)
planner.evaluateState(child)
planner.updateFmin(child)
if child.getF() < fmax:

lock(OPEN)
OPEN.push(child)
unlock(OPEN)

// Successful Search Step
return True

Note that the search step (algorithm 9) requires a thread ID. This is done to make sure
that a particular thread will utilize a private OBB tree for collision detection checks.

43

8. Parallel A* Planner

On the final stage of the search step generated successors are added to the locked OPEN
list by each of the threads. When a solution is found by one of the threads, shared OPEN
list gets locked and reordered according to the new fmin value. Afterwards, all threads
proceed working with the updated cost function until another solution is found. Threads
proceed until OPEN list is empty or until time horizon is reached. Algorithm pseudo code
representation is implemented by algorithm 8 .

8.3. Optimization and Evaluation

Presented parallel search scheme (algorithm 8 , algorithm 9) has scalability difficulties as
was discovered experimentally. Significant synchronization overhead was detected when
adding states to the OPEN list on the stage of successors generation. The cause was adding
states one by one from each executing thread, that triggered as many locking requests as
there are successors generated at the moment, and as a consequence OPEN list was always
locked. Logically that situation was getting even worse with increasing number of threads.

Algorithm 10 Advanced Explore Step For Parallel Execution (PA*)

// Fill private thread buffer without locking
for child in children:

planner.reserveMemoryForState(child)
planner.evaluateState(child)
planner.updateFmin(child)
if child.getF() < fmax:

BUFFER[threadID].push(child)

// Lock OPEN and add all states from the private buffer
lock(OPEN)
for state in BUFFER[threadID]:

OPEN.push(state)
unlock(OPEN)

To reduce the number of locking requests it was decided to use private buffer lists hold-
ing successor states of each thread (see algorithm 10). Generated states are added to the
buffer of the dedicated thread without locking. Afterwards each buffer is added to the
open list as a chunk of states that needs locking of the OPEN list maximum the number of
executing threads. Final version of the parallel A* planner is scaling well and outperform
sequential version of the algorithm (see chapter 10). The flow diagram of the algorithm
is presented in figure ?? .

44

9. Hash-Distributed Parallel A* Planner

9.1. Algorithm Overview

Unlike standard parallel A* implementation (chapter 8), hash-distributed approach im-
plies utilization of private OPEN and CLOSED lists for managing states [19], [20], [8]. Each
list has it’s private mutual execution lock that allows triggering a locking request only for
one particular list while not affecting others. Such scheme requires communication be-
tween threads when distributing generated successor states and is usually implemented
on distributed memory architectures. However, it can also be effective for the shared mem-
ory architectures with certain optimizations.

With this approach successor states generated by a particular thread have to be dis-
tributed among other threads according to one-to-all principal. State distribution is done
with a hash function that determines which state has to be sent to which process. Hash
function introduce a lot of flexibility to the architecture of the search algorithm. Depend-
ing on the given problem a hash function can serve as a domain distribution tool (search
space partitioning) or it can maintain load balancing according to some parameters. In
this work we will use a simple random function to distribute nodes so that the domain is
evenly distributed among all processes.

9.2. Planner Architecture

The search starts as usual by generating a root node and adding it to the OPEN list. First
thread to expand the root node, generate successor states and distribute them to other
threads. As soon each thread has states in it’s private OPEN list, it starts working on the
search independently but gets locked when other threads try to add states into it, or when
popping or pushing states from the list (algorithm 11).

9.2.1. Hash Function

As it was mentioned before, successor state distribution is done using a hash function,
which in this work is a random function from the STL library (std::rand()). When the suc-
cessor is created, hash function generates a natural number that denotes a thread ID that
will be assigned to the newly generated state. Random function was chosen in order to
maintain load balancing of the parallel implementation so no thread remains idle.

45

9. Hash-Distributed Parallel A* Planner

Algorithm 11 Cooperative Planner Parallel Path Computation (HDA*)

function computePathParallel():

// Initialize and generate root node
prepeareSearch()
allocateThreads(numThreads)

// Search sequence
while searchTime < timeHorizon do in parallel:

// Lock local OPEN list
lock(OPEN[threadID])
if OPEN[threadID].notEmpty():

coopNode = OPEN[threadID].pop()

// Unlock local OPEN list
unlock(OPEN[threadID])

// Execute search step in parallel
if CLOSED[threadID].contains(coopNode) or

DISCARDED[threadID].contains(coopNode):
continue

if executeSearchStepParallel(coopNode, threadID):
lock(CLOSED[threadID])
CLOSED[threadID].push(coopNode)
unlock(CLOSED[threadID])

else:
lock(DISCARDED[threadID])
DISCARDED[threadID].push(coopNode)
unlock(DISCARDED[threadID])

else:
// Unlock local OPEN list
unlock(OPEN[threadID])
if explorations(threadID) > 0

finishThreadExecution(threadID)

9.2.2. Communication

Since hash-distributed parallel search is usually implemented for distributed memory ar-
chitecture, communication is commonly done through MPI send/recv functions. How-
ever, in our case send/recv operations are replaced with writing to a memory location that
is ”private” for one single thread. In another words, shared memory location is logically
divided into ”private” spaces that are assigned to each thread. Each private memory par-

46

9.2. Planner Architecture

tition has an OPEN, CLOSED and DISCARDED lists that have to be locked during access.
Using separate mutual execution locks allows reducing synchronization overhead, since
lists are locked independently of each other.

Algorithm 12 Cooperative Planner Parallel Expand Step (HDA*)

if coopNode.getF() > fmax:
return False

elif planner.mutualTrajIntersection(coopNode, threadID):
return False

elif coopNode.isGoalNode():
CLOSED[threadID].push(coopNode)

// Lock solution update
lock()

fmax = fsol
planner.updateEpsilon(coopNode, fmin)
SOLUTIONS.push(coopNode)

// Reorder local OPEN lists
for i in range(numThreads):

lock(OPEN[i])
OPEN[i].reorder()
unlock(OPEN[i])

// Unlock solution update
unlock()

return True
else:

children = graph.generateCoopChildren(coopNode, threadID)

After a solution is found all private OPEN lists have to be reordered (see algorithm
12). OPEN lists update should be done by only one thread, therefore there is a mutual
execution lock that restrict the access to the solution update.

47

9. Hash-Distributed Parallel A* Planner

Algorithm 13 Cooperative Planner Parallel Explore Step (HDA*)

for child in children:
planner.reserveMemoryForState(child)
planner.evaluateState(child)
planner.updateFmin(child)

if child.getF() < fmax:

// Get random thread ID
sendID = rand() % numThreads
lock(OPEN[sendID])
OPEN[sendID].push(child)
unlock(OPEN[sendID])

48

Part V.

Results and Conclusions

49

10. Performance Evaluation

10.1. Criteria

This chapter evaluates the performance of implemented algorithms for distinct road sce-
narios. All scenarios will be tested with parallel cooperative path planners from chapter 8
and chapter 9 . Each algorithm will be executed fifty times for different number of threads
for every scenario. The algorithms will be tested for speedup, scalability, synchronization
overhead, number of explored nodes and compared to each other. Testing was performed
on a Windows 7 machine with Visual Studio 2010 IDE on the following hardware:

• CPU: Intel Core i7-2600 3.4 GHz (8 logical cores)

• RAM: 8.00 GB DDR3

10.2. Road Scenarios

To provide a valid estimation of algorithm effectiveness we will test it for several road
scenarios of distinct complexity, that require different amount of time and computational
power. In all road scenarios blue cars represent EGO vehicles (i.e. cars for whom trajecto-
ries are computed) and gray cars act as steady obstacles(zero velocity). Both EGO vehicles
move with velocity of thirty meters per second (30 [m/s]). Scenarios supposed to represent
a standard emergency situation when cars in front suddenly stop or appear on the road.

10.2.1. Normal Scenario

Figure 10.1.: Normal scenario; search tree of motion primitives; blue nodes - expanded
states; red nodes - states discarded due to trajectory intersection.

51

10. Performance Evaluation

Figure 10.2.: Normal scenario; parallel and hash-distributed A* search elapsed time.

It was decided to arrange scenarios according to the elapsed time needed to compute a
sub-optimal solution. Figure 10.1 illustrates a search tree for two EGO vehicles where blue
lines are expanded nodes and red lines are the nodes discarded due to mutual trajectories
intersections. There are also nodes that have been discarded because of collisions with
obstacles or road boundaries, however they are not shown in the search tree in figure 10.1.
Those invalid nodes are dismissed by the search on an early stage of successors generation
as described in chapter 6 . Figure 10.3 shows the fastest sub-optimal solution found by
one of the search algorithms. Since solutions may differ depending on the planner and
the number of processes, this particular path represents one of the possible solutions that
might be found.

Figure 10.3.: Normal scenario; fastest sub-optimal solution.

Figure 10.2 presents the elapsed time of the path planning for both parallel search strate-
gies implemented in this work. One may observe that parallel execution delivers speedup
with increasing number of processes for both planners (PA* and HDA*). Note that for six-
teen threads elapsed time is starting to increase because of the hardware limitations. As

52

10.2. Road Scenarios

mentioned earlier, Intel Core i7-2600 only has four physical cores with hyper-threading,
meaning that it cannot effectively maintain more than eight processes at a time. Each plot
(Figure 10.2) shows the elapsed time of a full tree exploration (empty OPEN list), the time
of first solution found and the time of last found solution.

Figure 10.4.: Normal scenario; fastest sub-optimal solution compared to an execution
threshold (red line).

figure 10.4 shows a comparison between the elapsed time of the fastest solution and
execution time threshold (real time computation margin). As one may observe, both par-
allel planners are able to guarantee path computation within a provided time frame for
this particular scenario.

Figure 10.5.: Normal scenario; OPEN list access time.

Synchronization overhead can only be evaluated by measuring the time that every thread
spent waiting to access an OPEN list (CLOSED list access is not important due to little
load). Figure 10.5 shows OPEN access times during the entire search sequence for both
parallel planners. It can be observed that standard parallel A* implementation introduces

53

10. Performance Evaluation

Figure 10.6.: Normal scenario; time spent for node evaluation and mutual collision checks.

significant overhead while a hash-distributed search shows very little of it, which was ex-
pected and implied by algorithm’s architecture. Figure 10.6 shows how parallelization
affects node assessment during the search. Clearly, node assessment time should decrease
with increasing number of threads since it is the most time consuming part of both algo-
rithms.

10.2.2. Difficult Scenario

Figure 10.7.: Difficult scenario; search tree of motion primitives; blue nodes - expanded
states; red nodes - states discarded due to trajectory intersection.

This scenario denotes a more difficult case for the planner, since both EGO vehicles have
to fit into the rightmost part of the road without hitting each other (figure 10.7), that
result in a bigger size of the search tree. A solution in figure 10.8 has an intersection
region of two trajectories in the right bottom corner. Though is might seem that vehicles
are colliding and the solution could be wrong, in fact, they are not. Since motion primitives
are six dimensional and the plot in figure 10.8 is two dimensional, one cannot see the time
axis. Trajectories are not intersecting in time, that can be observed only on a 3D plot.

54

10.2. Road Scenarios

Figure 10.8.: Difficult scenario; fastest sub-optimal solution.

By looking in figure 10.9 and figure 10.10 one can see that the algorithm is still scal-
ing, however, first solution is no longer fitting a 0.1 seconds threshold, since the scenario
complexity has increased. The fastest solution time is not scaling as well as full tree explo-
ration time. If there exist a sub-optimal solution that is relatively close to the root node,
performance of the parallel implementation is not much different from a sequential one
since it is reachable within very few search steps. In this case parallel expansions do not
deliver desired effect, because speedup is compensated by the overhead on list access. This
denotes that for easy solutions path finding parallelization might not be that effective as
for complex solutions. Similarly to the Normal scenario, synchronization overhead is in-
creasing for parallel implementation with shared lists (figure 10.11) and node assessment
time is going down (figure 10.12). Note that the overhead estimation is approximate since
there where no special tools used (e.g. parallel execution time measuring frameworks or
libraries). Time measurement was performed with Windows system functions that might
have caused some minor inconsistency is the results of overhead estimations.

Figure 10.9.: Difficult scenario; parallel and hash-distributed A* search elapsed time.

55

10. Performance Evaluation

Figure 10.10.: Difficult scenario; fastest sub-optimal solution compared to an execution
threshold (red line).

Figure 10.11.: Difficult scenario; OPEN list access time.

Figure 10.12.: Difficult scenario; time spent for node evaluation and mutual collision
checks.

56

10.2. Road Scenarios

10.2.3. Extreme Scenario

The goal of this scenario was to see algorithm’s behavior in extreme situations. Moving
with over 100 km/h both vehicles are forced to perform emergency breaking while fitting
one lane of the road (figure 10.13 and figure 10.14).

Figure 10.15 shows that the search execution time is much greater than for other two
scenarios presented in this paper. Also, the fist solution is far from 0.1 seconds threshold
and unpredictable in terms of scaling (figure 10.16).

Figure 10.17 shows that even for hash-distributed parallelization there is a list access
overhead which was not the case for two previous scenarios. One may conclude that the
amount of nodes added to the private lists is significant to introduce an overhead if the
problem size is big enough.

Figure 10.13.: Extreme scenario; search tree of motion primitives; blue nodes - expanded
states; red nodes - states discarded due to trajectory intersection.

Figure 10.14.: Extreme scenario; fastest sub-optimal solution.

57

10. Performance Evaluation

Figure 10.15.: Extreme scenario; parallel and hash-distributed A* search elapsed time.

Figure 10.16.: Extreme scenario; fastest sub-optimal solution compared to an execution
threshold (red line).

Figure 10.17.: Extreme scenario; OPEN list access time.

58

10.3. Summary

10.3. Summary

Both parallelization strategies proved to deliver speedup for all three road scenarios. While
standard parallel A* was slightly slower because of the synchronization overhead, the dif-
ference to hash-distributed algorithm was not drastic. Though, not all scenarios were suc-
cessfully resolved within the real time boundary of 0.1 seconds. Complex road situations
still require faster algorithms.

Figure 10.18.: Difficult scenario; speedup.

Figure 10.19.: Difficult scenario; efficiency.

Summarizing the outcomes from all three scenarios one may conclude that the difficult
scenario is a most generic one, thus it was chosen to represent generalized parallel search
parameters (subsection 10.2.2). Figure 10.18 and 10.19 respectively show speedup and ef-
ficiency comparison for both parallel implementations for a difficult scenario. Note that
both parameters are given for the time of full tree exploration i.e. time of search termi-
nation. The speedup is super linear up to 4 processors for both algorithms, that can be
explained by two factors. First, synchronization overhead is low since only two processors
are involved in computations (see figure 10.11). Second, problem size got smaller due
bigger size of the frontier and consequently better quality expansions (see figure 10.20)
that results in many nodes being discarded due to large fmax value and eventually less
problem size. With increasing number of threads, the overhead takes over the computa-

59

10. Performance Evaluation

tion time, while problem size is still shrinking. Nevertheless, speedup decreases and with
sixteen processors decline rapidly due to hardware limitations as was explained earlier. Ef-
ficiency is defined as speedup divided by a number of processors and shows how effective
can algorithm perform for particular number of processors (another measure of speedup).
Logically that efficiency is decreasing with growing number of processors because of rea-
sons explained earlier in this paragraph.

Figure 10.20.: Difficult scenario; maximum heap size and number of expanded nodes.

Figure 10.21.: Difficult scenario; number of solutions found after full tree exploration.

Even though the fastest solution is not scaling very well for both parallelization strate-
gies (e.g. figure 10.12), parallel search tend to find solutions that are closer to the optimal
one within the same time margin as a sequential version. With parallel implementation
the frontier size is slightly greater compared to sequential version, meaning that the search
has more options to pick a node with the lowest f value to expand, that eventually lead to
better quality solutions and less expanded nodes (figure 10.20). Moreover, for the same
reason, a number of found solutions and expanded nodes is decreasing with increasing
number of processes for both planners (figure 10.21). In terms of memory usage we can
conclude that both parallel implementations require to reserve more memory to store the
frontier, but the search tree is smaller compared to sequential algorithm which means we
need less storage to manage the CLOSED list.

60

11. Conclusions and Future Work

11.1. Conclusion

This work has studied an effect of parallelization applied to path planning algorithms. It
was implied that parallelization should significantly improve algorithm’s performance by
providing much greater data processing capabilities. Since there has been very little re-
search in this area [28], Deutsches Zentrum für Luft- und Raumfahrt has funded the work
and provided all development tools like simulation environment and real vehicle proto-
type.

First task was to introduce a complex search problem that might utilize advantages of
parallel algorithms. For that purpose an existing contingency path planner developed by
DLR was extended to work with two agents [6] which significantly increases search com-
plexity. Two-agent planner was supposed to compute emergency breaking trajectories for
two vehicles while avoiding obstacle collisions. In order to create such planner, a new state
space had to be defined that would hold a combination of individual vehicle states. Both
single-agent and two-agent planners use informed best-first heuristic search to compute a
path to the goal.

For a cooperative algorithm search evaluation function represents a summation of these
functions for individual states. By such manipulation the state space preserve a search tree
structure with a large branching factor. State transitions are represented by motion primi-
tives with corresponding enclosure regions. During the search motion primitives (discrete
trajectory curves) are checked for intersections against obstacles (other vehicles) and road
boundaries. Also, trajectories are examined for intersections against each other, since there
is more than one vehicle for whom a path is computed.

Parallelization strategies were chosen according to the search space structure and Do-
minion environment capabilities chapter 7 . Two approaches were chosen to parallelize a
cooperative contingency planner:

• Standard Parallel A*

• Hash-Distributed A*

First approach uses shared lists to maintain search execution. The algorithm is consid-
ered to be the most standard A* parallelization technique that requires minimum modifi-
cations to the sequential version, though it has major drawbacks like large synchronization
overhead. Second approach is considered more advanced. It uses shared lists to keep track
of visited states and distribute them according to a defined hash function, that demands

61

11. Conclusions and Future Work

interprocess communication.

Both parallelization strategies were tested for three different road scenarios to determine
their performance (chapter 10). It was identified that planners with chosen parameters
provide good results on speedup for all presented scenarios. It has been proven that paral-
lelization of path computation can be effectively implemented and applied for real world
applications. All algorithms were implemented in Dominion environment (chapter 7)
with POSIX Threads API.

11.2. Future Work

Parallel path planners presented in this work are capable of computing cooperative emer-
gency paths for two agents but also can be easily extended to any other planning problem
that utilizes motion primitives. Dominion environment (chapter 7) allows using one
search strategy for different types of problems and not restricting the usage of parallel
search only for cooperative planning.

This fact provides a lot of flexibility in terms of testing parallel algorithms applied for
path planning, which is very important considering that there are endless opportunities
for tuning and adjustment for better performance.

11.2.1. Possible Improvements on the Sequential Planner

The base contingency planner used a so called triple set heuristic that was intended to
improve performance of the search [6]. The idea was to split a set of generated succes-
sors into three subsets that were given weights according to the obstacle distance on their
way. Distance to the goal was underestimated when the obstacle was closer and vise versa,
that allowed to direct a planner towards an obstacle free area avoiding expensive collision
checking.

However, this strategy could’t adequately work when obstacle density was high enough,
and testing it with cooperative planner identified that it works even slower than simple
anytime heuristic. Though, the idea of speeding up the search by establishing obstacle-
heuristic dependency remains interesting. To make it work properly one might introduce
an obstacle density function that would determine heuristic weight according to the final
coordinate of the motion primitive. Same strategy can be applied to road boundaries so
that trajectories closer to the edge have less chance to be expanded.

11.2.2. Hash Function Choice

As it was mentioned before, parallelization strategy with the hash-function successors dis-
tribution was chosen for it’s flexibility (chapter 9). In this case flexibility means that a hash
function can be anything depending on the given task. For instance, if we would want to
assign parts of the search space to different threads, the hash function would produce
a coordinate-thread mapping that would determine which thread would process which

62

11.2. Future Work

state. Such approach would be effective when the state space is required to be explored
independently that does not require a lot of communication, however is not providing de-
sired load balancing.

Random hash function on the other hand can maintain perfect load balancing. Never-
theless, it requires interprocess communication at every search step that introduces some
synchronization overhead. In this regard, we may conclude that it is very important to
arrive at the correct balance between load balancing and synchronization overhead for the
choice of the hash-function. In this work (chapter 9) it has been decided to focus on a
random hash-function, however it would be also interesting to try out other techniques
and their effect on planner performance.

For instance, a hash function can sort out motion primitives according to their length
and distribute them between threads. Since every pack of successors have trajectories of
distinct length, the load balancing would be preserved, while search space is distributed.

Also, there is a possibility to speedup hash-distributed parallelization by utilizing buffers
during node distribution, similarly to chapter 8 . Instead of sending nodes one by one to
other threads with many locking requests, we can introduce small node buffers for each
thread we are sending nodes to. Each buffer will be added to the private OPEN list as a
chunk, which requires less locking operations.

11.2.3. Multi-Agent Planning

Introduced two-agent planner (chapter 6) theoretically could be extended to an arbitrary
number of agents. One of the advantages of such cooperative planner is it’s completeness
(eventually it finds an optimal path for each agent). However, search tree branching fac-
tor explodes exponentially with every new agent added to the system (section 4.2), thus
practical implementation will most likely be infeasible.

Nevertheless, there are ways to reduce a tree branching factor by introducing early node
assessment before generating successors. Something similar was done in chapter 6 when
collision checking of individual trajectories was done before generation of combined states.
Such technique can be extended so that individual successors are discarded according to
some other parameters. Together with improved heuristic-obstacle mapping such strat-
egy would allow having a number of agents in the system while still preserving required
performance.

63

11. Conclusions and Future Work

64

Appendix

65

12. Appendix

This chapter contains most important code listings (C++) from the Dominion project par-
allel planners implementation.

12.1. Main Function

Parallel strategy depends on the planner instance used by the main function (defined as a
class member variable).

// Main function (re-called everytime the search is completed)
void DCooperativePlannerTest::run(void)
{

// Threads initialization
Timer timer;
long long startTime;
pthread t *thread =

(pthread t *) calloc(NUM THREADS, sizeof(*thread));
struct pthread args *thread arg =

(pthread args *) calloc(NUM THREADS, sizeof(*thread arg));

// Search initialization (including parsing the environment)
planner->prepareSearch();

// Set start timer
startTime = timer.getRawCurrentTime();
timer.setRawStartTime(startTime);

// Create and fork threads
for (unsigned int i = 0; i < NUM THREADS; i++)
{

thread arg[i].threadID = i;
thread arg[i].startTime = startTime;
thread arg[i].planner = planner;
pthread create(thread + i,

NULL,
&perform search par,
thread arg + i);

}

67

12. Appendix

// Join threads
for (unsigned int i = 0; i < NUM THREADS; i++)
{

pthread join(thread[i], NULL);
}

// Stop timer
timer.stop();

// Free thread variables
free(thread);
free(thread arg);

/*
Data gathering and plotting ...

*/

// Resset before next search starts
resetSearchParams();

}

12.2. Thread Function

A function executed by all threads. Called from the main function.

// Thread variables
struct pthread args
{

unsigned int threadID;
long long startTime;
Planner *planner;

};

// Thread function
void *perform search par(void *ptr)
{

// Get thread local variables
Timer timer;
struct pthread args *args = (pthread args *) ptr;
Planner *planner = args->planner;
unsigned int id = args->threadID;

// Set start time (identical for each thread)
timer.setRawStartTime(args->startTime);

68

12.3. Root Node Generation

// Perform search
while(timer.getElapsedTimeFromStartSeconds() < SEARCH END TIME)
{

planner->executeSearchStep(id);
}

return NULL;
}

12.3. Root Node Generation

Generating root node by getting parameters from environment representation.

// Generate root
NodeFactory::child iterator* getRootNodes()
{

float tM, xM, yM, vM, ayM, thetaM;
float tS, xS, yS, vS, ayS, thetaS;

// Master vehicle parameters
tM = (float)(nodeFactory->envRep->VEH T GPS);
xM = (float)(nodeFactory->envRep->VEH X GPS);
yM = (float)(nodeFactory->envRep->VEH Y GPS);
vM = (float)(nodeFactory->envRep->VEH V ABS);
ayM = (float)(nodeFactory->envRep->VEH AY GPS);
thetaM = (float)(nodeFactory->envRep->VEH HEADING GPS);

// Slave vehicle parameters
tS = (float)(nodeFactory->envRep->VEH2 T GPS);
xS = (float)(nodeFactory->envRep->VEH2 X GPS);
yS = (float)(nodeFactory->envRep->VEH2 Y GPS);
vS = (float)(nodeFactory->envRep->VEH2 V ABS);
ayS = (float)(nodeFactory->envRep->VEH2 AY GPS);
thetaS = (float)(nodeFactory->envRep->VEH2 HEADING GPS);

// Fit analog coordinate values to the trajectory set grid
findClosestGraphValue(&vM, &ayM);
findClosestGraphValue(&vS, &ayS);

return new root coop child iterator(tM, xM, yM, thetaM, vM, ayM,
tS, xS, yS, thetaS, vS, ayS);

}

69

12. Appendix

12.4. Search Step

Called by each thread.

// Performs one search step (identical for both parallel strategies)
inline void AWAstarPA::executeSearchStep(unsigned int threadID)
{

// Evaluates a node with the lowest cost
expand(threadID);

// Generates successors
while (currentExpansion[threadID])
{

explore(threadID);
}

}

12.4.1. Expand

Hash-distributed strategy expand step.

// Generatin successors
inline void AWAstarHDA::expand(unsigned int threadID)
{

// Lock "pop" operation of the local open list
Node* parent;
pthread mutex lock(&mutex open[threadID]);
if (!localOPEN[threadID]->ol isEmpty())
{

parent = localOPEN[threadID]->ol pop();
pthread mutex unlock(&mutex open[threadID]);

}
else
{

pthread mutex unlock(&mutex open[threadID]);
if(exploration count[threadID] > 1)
threadFinished[threadID] = true;
return;

}

// Check if current cost is less then the upper bound
if(parent->getFOpt() >= fMax)
{

explorations discarded awabound[threadID] += 1;
nodeManagement->unreserve(parent);

}

70

12.4. Search Step

else
{

// Mutual collision detection
if(!parent->isAssess2Done())
{

costStrategy->assess2(parent, threadID);
exploration count[threadID] += 1;

}

// If not collision free, discard the node
if(!parent->isValid())
{

invalid edge count[threadID] += 1;
localDISCARDED[threadID]->cl add(parent);
nodeManagement->unreserve(parent);

}
else
{

if(parent->isGoalNode())
{

// Add solution node to CLOSED
localCLOSED[threadID]->cl add(parent);

// Lock shared variables update
pthread mutex lock(&mutex solution);

fMax = parent->getFOpt();
SOLUTION->cl add(parent);
costStrategy->adaptStrategy solutionFound(parent,
f uninflated min);

// Adapt strategy
if(useAdaptiveCostStrategy)
{

for (int i = 0; i < numThreads; i++)
{

// Lock local frontier
pthread mutex lock(&mutex open[i]);
for(OpenList::iterator* it =
localOPEN[i]->items(); it->hasNext())
{

costStrategy->reAssess(it->next(),
useMultiSetStrategy);

}
localOPEN[i]->reorder();
pthread mutex unlock(&mutex open[i]);

71

12. Appendix

}
}
pthread mutex unlock(&mutex solution);

}
else
{

Node* previous =
localCLOSED[threadID]->getPreviousExploration(parent);
if(previous
&& previous->getFOpt() <= parent->getFOpt())
{

re explorations discarded[threadID] += 1;
nodeManagement->unreserve(parent);

}
else
{

if(!localOPEN[threadID]->ol isEmpty()
&& parent->getF()
> localOPEN[threadID]->ol peek()->getF())
{

// Lock "add" operation of the local open list
pthread mutex lock(&mutex open[threadID]);
localOPEN[threadID]->ol add(parent);
pthread mutex unlock(&mutex open[threadID]);

}
else
{

if(previous)
re exploration count[threadID] += 1;

else
exploration count[threadID] += 1;

// Generate successors
localCLOSED[threadID]->cl add(parent);
if(currentExpansion[threadID]!= 0)

delete currentExpansion[threadID];
currentExpansion[threadID] =
samplingStrategy->getChildren(parent, threadID);

}
}

}
}

}
}

72

12.4. Search Step

12.4.2. Explore

Hash-distributed strategy explore step.

// Evaluating successors
inline void AWAstarHDA::explore(unsigned int threadID)
{

if(currentExpansion[threadID]->hasNext())
{

// Lock memory reservation
pthread mutex lock(&mutex reserve);
Node* child = nodeManagement->reserve();
updateMaxHeapSize(threadID);
pthread mutex unlock(&mutex reserve);
currentExpansion[threadID]->createNext(child);
costStrategy->assess1(child, useMultiSetStrategy, threadID);

if(!child->isValid())
{

localDISCARDED[threadID]->cl add(child);
invalid edge count[threadID] += 1;
return;

}

if(child->getFOpt() >= fMax || !child->isValid())
{

nodeManagement->unreserve(child);
if(child->getFOpt() >= fMax)
{

explorations discarded awabound[threadID] += 1;
}
if(!child->isValid())
{

invalid edge count[threadID] += 1;
}

}
else
{

// Lock uninflated cost update
pthread mutex lock(&mutex uninflated);
if(!child->isGoalNode())
{

setFUninflatedMin(min(f uninflated min, child->getFOpt()));
}
pthread mutex unlock(&mutex uninflated);

73

12. Appendix

// Get send ID
unsigned int sendID = rand() % numThreads;

// Add to the local list according to send ID
pthread mutex lock(&mutex open[sendID]);
localOPEN[sendID]->ol add(child);
pthread mutex unlock(&mutex open[sendID]);

}
}
else
{

// Reset current expansion and children counter
currentExpansion[threadID] = 0;
children count[threadID] = 0;

}
}

12.5. Node Generation

Successor states generation process.

// Create CoopNode object based on motion primitives sets
void createNext(Node *freeMemory)
{

// Create a cooperative node
CoopNode *coopFreeMemory = (CoopNode *) freeMemory;

*coopFreeMemory = CoopNode(parent,
parent->getMasterVehNode(),

*masterIterator,
parent->getSlaveVehNode(),

*slaveIterator);

// Increment individual iterators
masterIterator++;
if (masterIterator == masterTrajs.end())
{

slaveIterator++;
if(slaveIterator != slaveTrajs.end())
{

masterIterator = masterTrajs.begin();
}

}
}

74

12.6. Node Assessment

// Returns cooperative children iterator
virtual coop child iterator* getChildren(Node* parentNode,

int threadID = 0)
{

CoopNode *coopParent = (CoopNode *) parentNode;
Node6d *master = coopParent->getMasterVehNode();
Node6d *slave = coopParent->getSlaveVehNode();

// Get super sets for both vehicles
TrajectorySuperSet *masterVehSet =

setMap->getTrajectorySuperSet(master->getV(),
master->getAy());

TrajectorySuperSet *slaveVehSet =
setMap->getTrajectorySuperSet(slave->getV(),

slave->getAy());

return new coop child iterator(coopParent,
masterVehSet,
slaveVehSet,
envRep);

}

12.6. Node Assessment

Evaluation of the states.

// Evaluate node
void assess1(Node *node,

bool useMultiSetStrategy,
unsigned int obbID = 0)

{
// Extract vehicle nodes
CoopNode *coopNode = (CoopNode *) node;
CoopNode *coopParent = (CoopNode *) coopNode->getParent();
Node6d *master = coopNode->getMasterVehNode();
Node6d *slave = coopNode->getSlaveVehNode();

master->setValid(true);
slave->setValid(true);
node->setValid(true);

75

12. Appendix

// Execute early assessment for each vehicle
strategyM->assess1(master, useMultiSetStrategy);
strategyS->assess1(slave, useMultiSetStrategy);

// Set cooperative node as a goal node
if (master->isGoalNode() && slave->isGoalNode())
{

node->setGoalNode(true);
}

// Set node parameters
node->setC((master->getC() + slave->getC()) / 2.0);
node->setG((master->getG() + slave->getG()) / 2.0);
node->setH((master->getH() + slave->getH()) / 2.0);
node->setFOpt((master->getFOpt() + slave->getFOpt()) / 2.0);
node->setF((master->getF() + slave->getF()) / 2.0);
node->setAssess1Done(true);

}

// Checks for trajectories intersection
void assess2(Node *node, unsigned int obbID = 0)
{

// Initialization
float tStartFixed, tEndFixed, tStartFloating, tEndFloating;
Node6d *fixed, *floating;

// Extract vehicle nodes
CoopNode *coopNode = (CoopNode *) node;
CoopNode *coopParent = (CoopNode *) coopNode->getParent();
Node6d *master = (Node6d *) coopNode->getMasterVehNode();
Node6d *slave = (Node6d *) coopNode->getSlaveVehNode();
Node6d *parentM = (Node6d *)(master->getParent());
Node6d *parentS = (Node6d *)(slave->getParent());

// Check if not root
if (coopParent != 0)
{

// Assign the node to be checked against
if (parentM->getT() < parentS->getT())
{

fixed = master;
floating = slave;

}
else

76

12.6. Node Assessment

{
fixed = slave;
floating = master;

}

// Get initial time intervals
tStartFixed = ((Node6d *) fixed->getParent())->getT();
tEndFixed = fixed->getT();
tStartFloating = ((Node6d *) floating->getParent())->getT();
tEndFloating = floating->getT();

// Moving towards the root
while (tStartFixed < tEndFloating)
{

// Check if time intervals are intersecting
if ((tEndFixed > tStartFloating)
&& (tStartFixed < tEndFloating))
{

if (trajectoriesAreIntersecting(fixed, floating, obbID))
{

node->setValid(false);
break;

}
}

// Move one node back
floating = (Node6d *) floating->getParent();
if (floating->getParent() != 0)
{

// Reset start and end time
tStartFloating =
((Node6d *) floating->getParent())->getT();
tEndFloating = floating->getT();

}
else
{

break;
}

}

node->setAssess2Done(true);
}

}

77

Bibliography

[1] Blaise Barney. Message passing interface introduction. https://computing.
llnl.gov/tutorials/mpi/#What.

[2] Blaise Barney. Posix threades introduction. https://computing.llnl.gov/
tutorials/pthreads/.

[3] Ethan Burns, Seth Lemons, and Rong Zhou. Best-first heuristic search for multi-core
machines, 2009.

[4] Ethan Burns, Sofia Lemons, Wheeler Ruml, and Rong Zhou. Parallel best-first search:
The role of abstraction. In Abstraction, Reformulation, and Approximation, Papers from
the 2010 AAAI Workshop, Atlanta, Georgia, USA, July 12, 2010, 2010.

[5] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Intro-
duction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[6] Joao Pedro de Campos Salvado. Contingency planning for automated vehicles in
urban traffic. Master’s thesis, Tecnico Lisboa, November 2015.

[7] Mathijs de Weerdt and Brad Clement. Introduction to planning in multiagent sys-
tems. Multiagent Grid Syst., 5(4):345–355, December 2009.

[8] Matthew Evett, Ambuj Mahanti, Dana Nau, James Hendler, and James Hendler.
PRA*: Massively parallel heuristic search. Journal of Parallel and Distributed Computing,
25:133–143, 1995.

[9] David Ferguson , Maxim Likhachev, and Anthony (Tony) Stentz . A guide to heuristic-
based path planning. In Proceedings of the International Workshop on Planning under
Uncertainty for Autonomous Systems, International Conference on Automated Planning and
Scheduling (ICAPS), June 2005.

[10] C. Gackstatter, S. Thomas, Dr. P. Heinemann, Prof Gudrun Klinker, Audi Elec-
tronics Venture Gmbh, Leibniz Universitat Hannover, and Technische Universitat
Muenchen. Stable road lane model based on clothoids, 2006.

[11] Stefan K. Gehrig and Fridtjof Stein. Cartography and dead reckoning using stereo
vision for an autonomous car. In ICIP (4), pages 30–34, 1999.

[12] S. Gottschalk, M. C. Lin, and D. Manocha. OBB tree: A hierarchical structure for rapid
interference detection, 1996.

[13] Ariel Felner Guni Sharon, Roni Stern and Nathan Sturtevant. Meta-agent conflict-
based search for optimal multi-agent path finding. In to appear in SoCS, 2012.

79

https://computing.llnl.gov/tutorials/mpi/#What
https://computing.llnl.gov/tutorials/mpi/#What
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/

Bibliography

[14] Eric A. Hansen and Rong Zhou. Anytime heuristic search. Journal of Artificial Intelli-
gence Research (JAIR), 28:267–297, 2007.

[15] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems, Science, and Cybernetics, SSC-
4(2):100–107, 1968.

[16] Daniel Hess, Matthias Althoff, and Thomas Sattel. Formal verification of maneuver
automata for parameterized motion primitives, 2014.

[17] Thomas M. Howard, Colin J. Green, Alonzo Kelly, and Dave Ferguson. State space
sampling of feasible motions for high performance mobile robot navigation in com-
plex environments. Journal of Field Robotics, pages 325–345, 2008.

[18] Keki B. Irani and Yifong Shih. Parallel A* and AO* algorithms: An optimality criterion
and performance evaluation. In International Conference on Parallel Processing, ICPP’86,
University Park, PA, USA, August 1986., pages 274–277, 1986.

[19] Akihiro Kishimoto and et al. Scalable, parallel best-first search for optimal sequential
planning, 2009.

[20] Akihiro Kishimoto, Alex Fukunaga, and Adi Botea. Evaluation of a simple, scalable,
parallel best-first search strategy, 2012.

[21] Stepan Kopriva, David Sislak, and Michal Pechoucek. Towards parallel real-time
trajectory planning, 2009.

[22] Bob Kuhn and Paul Petersen. Openmp versus threading in c/c++, 1999.

[23] Steven M LaValle. Planning algorithms, 2004.

[24] Maxim Likhachev, Geoff Gordon, and Sebastian Thrun. ARA*: Anytime A* with
provable bounds on sub-optimality. In IN ADVANCES IN NEURAL INFORMATION
PROCESSING SYSTEMS 16: PROCEEDINGS OF THE 2003 CONFERENCE (NIPS-03).
MIT Press, 2004.

[25] Raz Nissim and Ronen Brafman. Distributed heuristic forward search for multi-agent
planning, 2014.

[26] Raz Nissim and Ronen I. Brafman. Distributed heuristic forward search for multi-
agent planning. J. Artif. Intell. Res. (JAIR), 51:293–332, 2014.

[27] Hans B. Pacejka. Tire and vehicle dynamics. SAE, 2006.

[28] Mike Phillips, Maxim Likhachev, and Sven Koenig. PA*SE: Parallel A* for slow ex-
pansions, 2014.

[29] Mikhail Pivtoraiko. Differentially Constrained Motion Planning with State Lattice Motion
Primitives. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA,
February 2012.

80

Bibliography

[30] Mikhail Pivtoraiko and Alonzo Kelly . Efficient constrained path planning via search
in state lattices. In The 8th International Symposium on Artificial Intelligence, Robotics and
Automation in Space, September 2005.

[31] Mikhail Pivtoraiko and Alonzo Kelly . Generating near minimal spanning control
sets for constrained motion planning in discrete state spaces. In Proceedings of the 2005
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS ’05), pages
3231 – 3237, August 2005.

[32] Joel Yliluoma. Openmp guide. http://bisqwit.iki.fi/story/howto/
openmp/.

[33] Rong Zhou and Eric A. Hansen. Parallel structured duplicate detection. In In National
Conference on Artificial Intelligence (AAAI), pages 1217–1222, 2007.

81

http://bisqwit.iki.fi/story/howto/openmp/
http://bisqwit.iki.fi/story/howto/openmp/

	Acknowledgements
	Abstract
	Outline of the Thesis
	Introduction and Theory
	Introduction
	Theory
	Motion Planning
	Continuous State Space Sampling
	Control Space Sampling
	Best-First Heuristic Search
	A* Search
	Anytime Weighted A* Search

	Parallel Best-First Heuristic search
	Shared lists
	Private lists
	Bottlenecks

	Problem Statement

	Vehicle and Environment Models
	Motion Primitives
	Kinematic Vehicle Model
	Constraint Graph
	Trajectory Curves
	Trajectory Enclosure Region

	State Space
	Single-Agent Planner State Space
	Multi-Agent Planner State Space
	States Combination Node
	Computational Demands

	Path Planners
	Contingency Planner
	Heuristic
	Planning Sequence
	Exploration
	Expansion
	Collision Detection

	Example

	Cooperative Contingency Planner
	Modification to the Contingency Planner
	Planning Sequence
	Advanced Node Generation
	Node Assessment
	Mutual Collision Detection

	Example

	Best-First Search Parallelization Applied to Path Planning
	Parallelization Strategy
	Software Environment Limitations and Memory Architectures
	Lists Structures

	Parallel A* Planner
	Algorithm Overview
	Planner Architecture
	Optimization and Evaluation

	Hash-Distributed Parallel A* Planner
	Algorithm Overview
	Planner Architecture
	Hash Function
	Communication

	Results and Conclusions
	Performance Evaluation
	Criteria
	Road Scenarios
	Normal Scenario
	Difficult Scenario
	Extreme Scenario

	Summary

	Conclusions and Future Work
	Conclusion
	Future Work
	Possible Improvements on the Sequential Planner
	Hash Function Choice
	Multi-Agent Planning

	Appendix
	Appendix
	Main Function
	Thread Function
	Root Node Generation
	Search Step
	Expand
	Explore

	Node Generation
	Node Assessment

	Bibliography

