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ABSTRACT
We present techniques for predictive modeling of weed
growth and an improved planning index to be used in
conjunction for the purpose of improving the perfor-
mance of coordinated weeding algorithms for robotic
agriculture.

BACKGROUND
Agbot System We work with a team of agbots used for
the mechanical control of herbicide-resistant weeds [1].

Figure 1: Our solution for persistent autonomous weed con-
trol is a collaborative team of mechanical weeding robots.

Simulation Framework For this work, we use an eco-
logically realistic simulation called Weed World [1].

Figure 2: Weed World, designed in Python. Each cell repre-
sents a small 0.8 m square portion of the field. The colors of
the squares represent weed seed bank density, from light to
dark. The agents are shown in solid blue.

This simulation was developed with respect to the phys-
ical characteristics and capabilities of the TerraSentia
robot [2].

Figure 3: Terra Sentia Robot Figure 4: Weeder

METHODS
Evolving Gaussian Processes (E-GP): This work makes use of a prediction scheme, Evolving Gaussian Processes
(E-GPs)[3, 4], where the weights, wT , in a gaussian process over the spatial domain are evolved forward using a
linear operator, A. We can make predictions of weed density, y, anywhere in the spatial domain using the feature
map φ̂ (x, y).

wT = AwT−1 (1)
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T
φ̂ (x, y) (2)

Predictive Baseline: We wish to compare E-GP to a more simplified model-based approach, which will take ad-
vantage of known properties of the weed growth model, such as the fact that it approaches the seed bank density,
S0 (x, y), at an exponentially decaying rate. We propose the following candidate emergence model.

ζ (x, y, t) = S0 (x, y)
(
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t
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)
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In this model, to predict the total emerged weed density, ζ (x, y, t), we use a single time-invariant Gaussian process.
This process takes in the observations, ζ̄ (x, y, t), and predicts the initial seed bank density Ŝ0 (x, y).
Entropic Value at Risk (EVaR): Each robot must make a decision about which row to weed next after it has finished
a row. This is essentially a bandit problem. Gittin’s Index, G (Xi), is known to be optimal metric for planning on
tasks with an uncertain termination time and known statistics [5]. We compute the value for weeding a particular
row with Gittins index using EVaR [6], which is a principled way to optimize in terms of the reward and information
gain. Here, Ti (xi (t) , ai (t)) is the proposed time to weed row ai (t) given agent i is at position xi (t), γ is a learning
rate, and Ri (ai (t)) is the estimated reward for weeding row ai (t).

G (Xi) = sup
ai

{
γTi(xi(t),ai(t))EVaR

[
Ri (ai (t)) ; 1 − e−DKL(Q||P )

]∑Ti(xi(t),ai(t))
t=0 γt

}

RESULTS

Figure 5: Comparison of Algorithms Figure 6: Comparison of Algorithms Figure 7: Old Planner and Predictor

Figure 8: New Planner, Old Predictor Figure 9: New Planner, E-GP Figure 10: New Planner, Baseline

RESULTS
The results show that when EVaR is used for the plan-
ning index, decision making is improved, even without
a refined prediction scheme such as E-GP, or the baseline
predictor. From Figures 7, and 8, we see that the use of
EVaR improves robustness, allowing the algorithms us-
ing EVaR to succeed in cases when the algorithm using
only Gittin’s index does not.

With the addition of refined prediction strategies, we see
only slight performance changes as shown in Figure 5.
In terms of how many agents can be used to weed fields
with a given average seed bank density, the system us-
ing E-GP has comparable robustness to the systems us-
ing other prediction strategies.

The notable contribution of E-GP is that it provides
higher predictive accuracy to the previous course pre-
diction scheme, while using less information than the
baseline predictor.

CONCLUSION
+ The addition of EVaR improves both planning perfor-

mance, and the robustness of the system to weeding
fields with high seed bank densities using a limited
number of agents.

+ EVaR used in conjunction with E-GP or the Baseline
Predictor provides a further performance improve-
ment, though the robustness remains the same.

+ The similar robustness between algorithms with var-
ious prediction schemes is theorized to be due to the
information gain term in EVaR dominating decision
making during early stages of weeding.
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