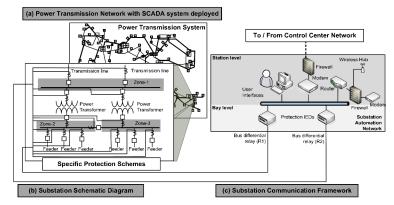


CPS: Medium: Collaborative Research: An Actuarial Framework of Cyber Risk Management for Power Grid

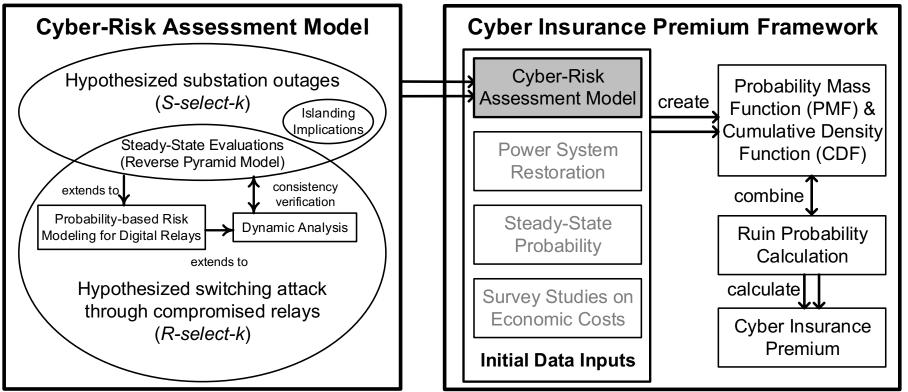
Chee-Wooi Ten¹, Lingfeng Wang², Yeonwoo Rho¹, and Wei Wei² Michigan Technological University¹, University of Wisconsin—Milwaukee²

ten@mtu.edu, wang289@uwm.edu , yrho@mtu.edu, weiw@uwm.edu

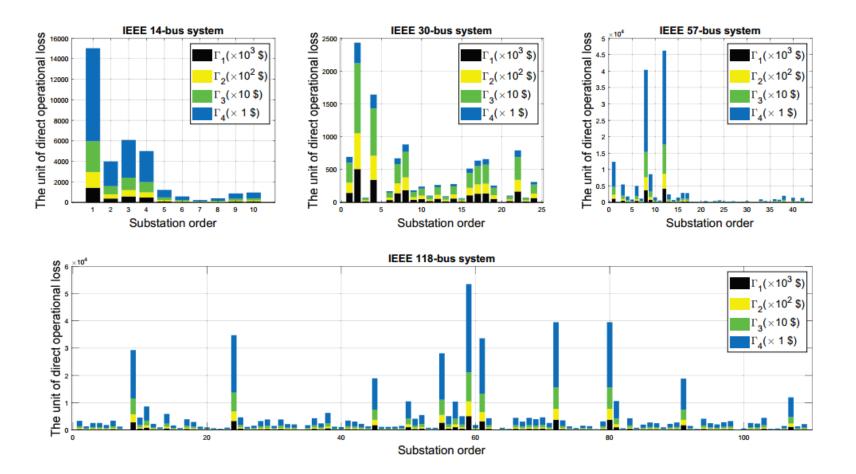
Award numbers: ECCS1739422, ECCS1739485



Cyber Insurance Premium for


Bulk Interconnected Power Grids

IP-based substations, generating units, and other interconnected grids MUST be qualitatively and quantitatively established in the insurance incentive policies with security technologies against switching cyberattacks.


Cyber-Physical Relationship to Substation Switchgear and Control Center

Goals of This Project

Direct Operational Losses in Financial Term

- Intrusion anomalies and security event extraction from cyber systems
- Relationship between pre-disturbance (prior execution of switching attacks)
- During power outage on locational marginal pricing
- Restoration efforts and time

Preliminary results Based on Claim Size and Premium Policy

The ruin probability $\varphi(u)$ for the initial risk reserve u is fundamentally defined as:

$$\varphi(u) = Pr\{M > u\} = 1 - M$$

$$M = L_1 + L_2 + \dots + L_n + \dots + L_N \text{, is} \qquad F_M(u) \text{ r}$$
defined as maximal aggregate loss function

defined a

epresents the cumulative density n (CDF)

 $F_M(u)$

Each random variable L_n represents claimed loss for insurance company. It is assumed that the number of claims N follows a geometric distribution, satisfying: $Pr\{N = N\}$ n = $(1 - q)q^{n}$, where $q = 1/(1 + \theta)$

Results of Ruin Probabilities and Premium Policy															
IEEE 14-bus system (10 substations)				IEEE 30-bus system (24 substations)				IEEE 57-bus system (43 substations)				IEEE 118-bus system (109 substations)			
initial reserve	theta	Ruir	n Prob.	initial reserve	theta	Rui	in Prob.	initial reserve	theta	Rui	n Prob.	initial reserve	theta	Ru	in Prob.
0			1.586E-03	0			6.376E-04	0			3.971E-04	0			1.016E-03
5	100		5.276E-05	5	100		3.254E-06	5	100		3.971E-04	5	100		6.977E-06
10			7.250E-05	10			3.628E-06	10			3.404E-08	10			5.987E-06
System	lambda		0.0067	System	lambda		0.0157	System	lambda		0.0289	System	lambda		0.0724
Constants	h		0.5	Constants	h		0.5	Constants	h		0.5	Constants	h		0.5
	VOLL	\$	4,467,000		VOLL	\$	3,166,400		VOLL	\$	19,895,000		VOLL	\$	139,010,000
Mean Claim	DC	\$	480,170	Mean Claim	DC	\$	340,360	Mean Claim	DC	\$	2,138,600	Mean Claim	DC	\$	14,943,000
Size	AREP	\$	93,851	Size	AREP	\$	66,525	Size	AREP	\$	418,000	Size	AREP	\$	2,920,600
	LMP	\$	28,373		LMP	\$	1,954		LMP	\$	134,920		LMP	\$	891,590
Premium Policy	VOLL	\$	3,022,819	Feasible premium policy	VOLL	\$	5,020,960	Feasible premium policy	VOLL	\$	58,071,516	Feasible premium policy	VOLL	\$	1,016,496,724
	DC	\$	324,931		DC	\$	539,709		DC	\$	6,242,360		DC	\$	109,269,193
	AREP	\$	63,509		AREP	\$	105,489		AREP	\$	1,220,100		AREP	\$	21,356,595
	LMP	\$	19,200		LMP	\$	3,098		LMP	\$	393,818		LMP	\$	6,519,663