

SaTC: STARSS: Small:

Analysis of Security of Split Manufacturing Using Machine Learning Azadeh Davoodi

Department of Electrical and Computer Engineering University of Wisconsin - Madison

Background

Proposed Techniques

1. Addressing runtime scalability

Key idea: Most v-pin pairs can be easily classified as not connected simply because they are far apart.

Approach: Avoid these v-pin pairs both during training and testing, by only examining pairs near each other (thresholds determined by observing the distribution of Manhattan distances).

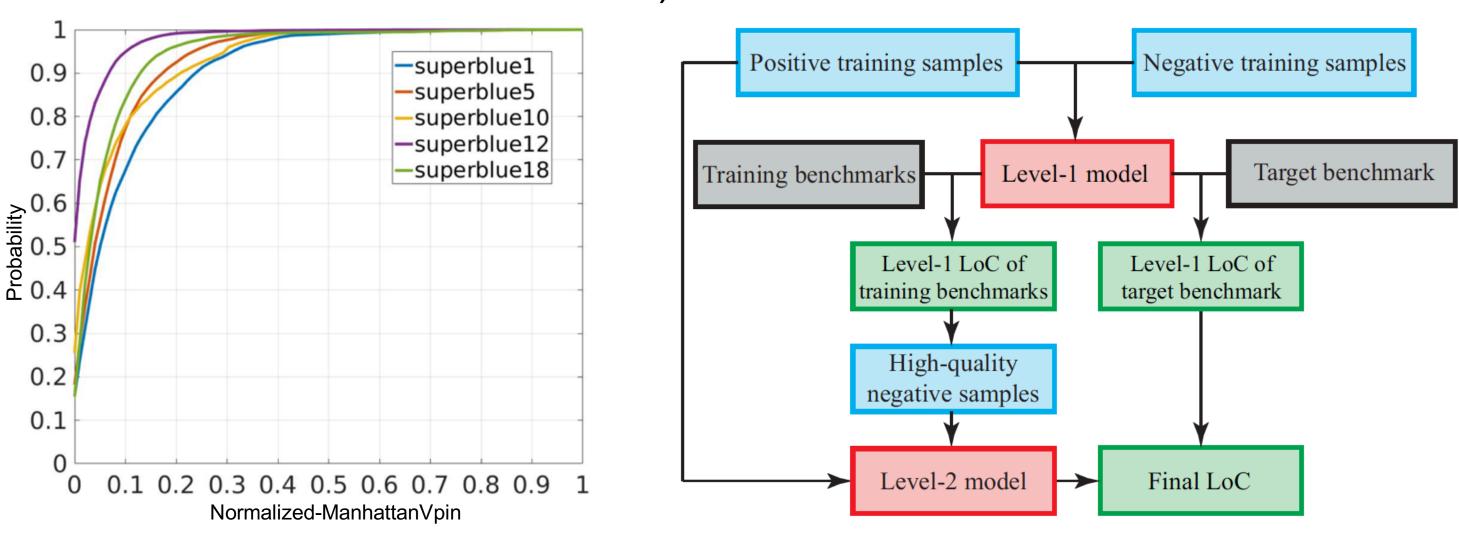


Image Source: https://www.iarpa.gov/images/files/programs/tic/08-TIC_final.pdf

Motivation:

Avoids disclosing complete wiring information of a design.

Attack Model:

Given FEOL and the split layer (top layer of FEOL), try to guess connections in BEOL.

Proximity Attack (PA):

Generate a list of candidate "v-pins" for each broken wire and pick the closest candidate on split layer as the match.

Performance Metrics

- **[LoC]**: Size of List of Candidates (LoC) for each broken wire.
- Accuracy: Likelihood that LoC contains the actual match.
- %PA: Likelihood of picking the correct match from LoC, currently done by PA.

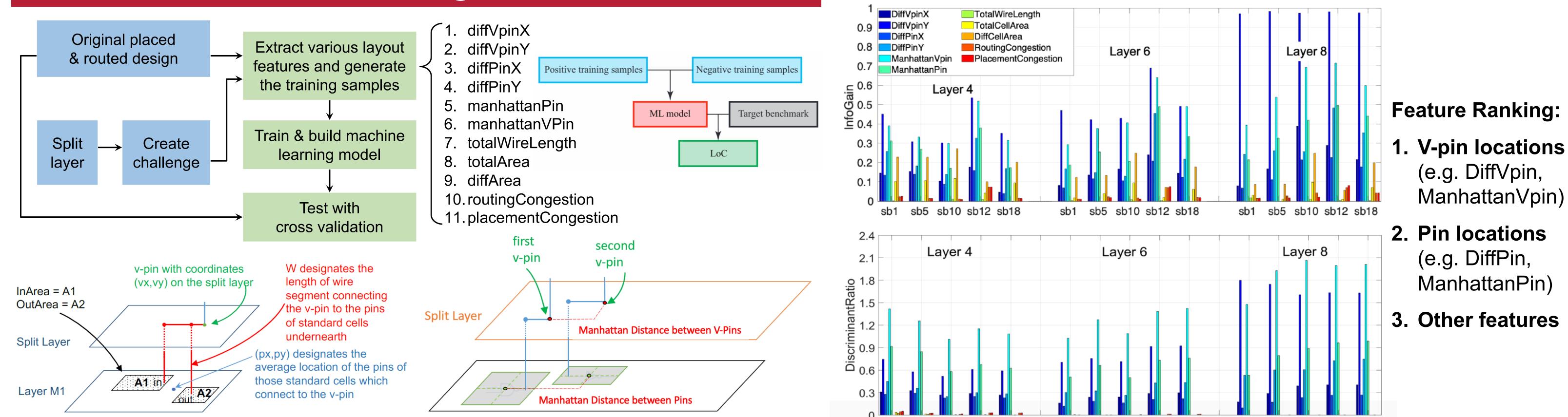
Machine Learning Workflow

	<pre></pre>					
Original placed						
original placed	Extract various layout	2 diff/pinY				

2. Addressing degradation in classification accuracy

Key idea: Quality of negative samples (unmatched v-pins) is the most important factor in accurate classification.

Approach: Treat the unmatched v-pins in LoC (false alarms) as "high quality" negative samples. Train a L2 model on top of L1 results and perform L2 classifications for v-pins in the L1 LoC.

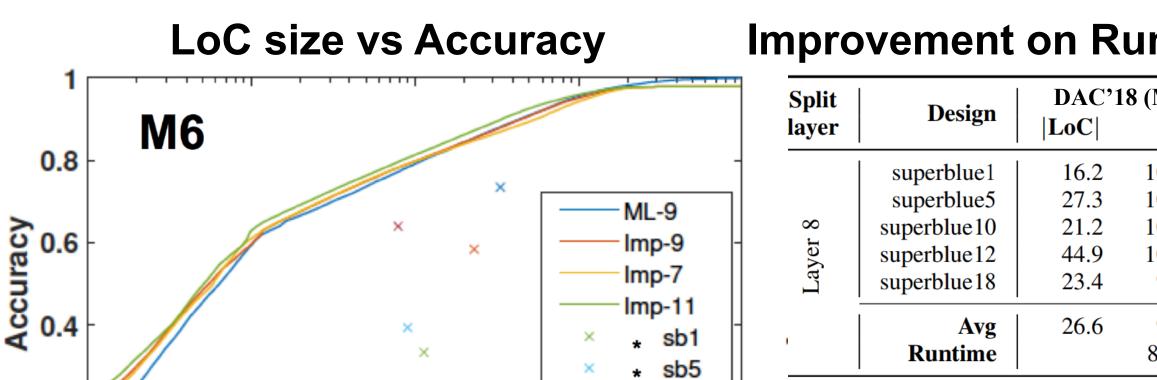

3. Controlling the LoC size

sb5 sb10 sb12 sb18

0.2

Key idea: 1) Explore the tradeoff between LoC size vs. classification accuracy without retraining the model. 2) Better comparison among different models. **Approach**: Vary the threshold of classification during the testing phase to generate a tradeoff curve between LoC size and accuracy. Use cross validation to determine the proper LoC size for PA.

Experiments Results


Challenges

Poor scalability when moving to lower layers

e.g., the average number of v-pins for split layers 8, 6, 4, are 11K, 59K, and 160K, respectively

Challenges include:

- 1. Poor runtime for both testing $(O(n^2))$ and training (O(n)).
- Degradation in quality of results, i.e., classification accuracy

sb5 sb10 sb12 sb18

sb1

Improvement on Runtime Scalability

sb1 sb5 sb10 sb12 sb18

Split	Design	DAC'1	8 (ML-9)	Imp-7		
layer	Design	LoC	Acc.	LoC	Acc.	
	superblue1	16.2	100.00%	15.2	99.85%	
Layer 8	superblue5	27.3	100.00%	27.2	99.60%	
	superblue10	21.2	100.00%	19.4	100.00%	
	superblue12	44.9	100.00%	48.0	99.75%	
	superblue18	23.4	99.92%	23.3	99.87%	
1	Avg	26.6	99.97%	26.6	99.81%	
	Runtime		8.48 min		0.48 min	

3. Larger size of LoC (many more potential candidates are identified for each v-pin)

Our Contributions

- We study the ranking of features in general. Each feature is measured in several metrics signifying its importance.
- We propose novel ways to make the training and testing scalable, including \bullet 1) Addressing poor runtime scalability, 2) Addressing degradation in classification accuracy,
- 3) Controlling the size of LoC.
- Significant runtime improvement without sacrifice in the quality of attacks. ullet
- Improvement on classification accuracy & PA performance compared to prior works. ullet

0.2	×	* sb10		superblue1	1712.0	83.12%	555.1	74.64%
		* sb12		superblue5	1775.2	88.71%	645.6	77.79%
* Prior work in TVLSI'17.		* sb18	9	superblue10	2300.8	92.65%	759.4	82.30%
		3010	yer	superblue12	8383.4	97.25%	2955.2	89.72%
10 ⁻⁴ 10 ⁻³ 10 ⁻²	10 ⁻¹	1	La.	superblue18	2678.7	92.78%	716.8	84.08%
LoC fraction = LoC /	•	Avg Runtime	3370.0	90.90% 21.65 hrs	1126.4	81.71% 0.42 hrs		

Improvement by Two-level Pruning					Improvement on PA Performance						
Split layer	Design	Two-lev LoC	el pruning Acc.	No p LoC	oruning Acc.	Design	9 ML-9	%PA from Cross Validation Imp-9 Imp-7 Imp			
Layer 8	superblue1 superblue5 superblue10 superblue12 superblue18	3.15 4.33 4.54 8.73 5.46 5.24	40.95% 57.51% 79.87% 38.49% 67.86% 56.94%	5.31 6.92 7.91 5.40 7.20 6.55	22.68% 39.82% 66.54% 60.01% 53.40%	Split layer sb1 sb5 sb10 sb12	15.21%14.8420.04%21.2242.97%59.5410.96%15.02	14.84% 21.22% 59.54% 15.03%	21.35% 57.78% 13.84%	11.05% 21.69% 42.30% 11.53%	
	Avg Runtime Default three		111.7 sec		27.8 sec	sb18 Avg Time	13.41% 20.52% 91.4 sec	17.56% 25.64% 101.8 sec	18.43% 24.89% 59.0 sec	17.85% 20.88% 60.0 sec	

Prior work in TVLSI'17: 1.95% (sb1).