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Shape Deviation Control in CPAMS

A significant trajectory of additive manufacturing (AM) technologies
is cyber-physical AM systems (CPAMS) that seamlessly integrate
computer-aided design models and physical AM processes.

The future growth and adoption of CPAMS is negatively impacted by
geometric shape deviations that are introduced by AM processes.

Due to its nature and capability of one-of-a-kind manufacturing, shape de-
viation modeling and control in CPAMS is complicated by three features.

• Wide variety of shapes with varying geometric complexities.

• Vast spectrum of distinct AM processes in CPAMS.

• Small samples of tests shapes that could possibly be manufactured.

Current shape deviation modeling and control methods cannot address
all of these novel features of CPAMS in an automated or efficient manner.

Objective: Automated Modeling in CPAMS
Geometric shape deviation control in CPAMS requires efficient learning of
deviation models across new AM processes and shape varieties.

We developed a general Bayesian neural network methodology that en-
ables automated and flexible deviation modeling from point cloud data
collected across different processes and shapes in CPAMS.

Background and Notation
We transform point cloud measurements of a shape to decouple geomet-
ric shape complexity from the task of modeling (Huang et al., 2015).

The deviation for point θ on shape s under process p is defined as

ys,p(θ) = robss,p (θ)− rnoms (θ).

We utilize extreme learning machines (ELMs, Huang et al., 2004) as a
basic building block of our deviation modeling methodology for CPAMS.

Bayesian Neural Network Methodology
1: Specify a Bayesian ELM model fs,p(·) for shape s under process p.

2: For a new process p′, use the posterior under fs,p(·) to learn the
total equivalent amount T (·) (Sabbaghi & Huang, 2017) of p′, with

fs,p′ ≡ fs,p(T (·)) + T (·).

3: For a new shape s′, use the posterior under fs,p(·) to learn its devi-
ation feature δs′(·) (Huang et al., 2014; Sabbaghi et al., 2017), with

fs′,p ≡ fs,p(·) + δs′(·).

4: Model the deviation of a new shape s′ under a new process p′ by
performing Steps 2 and 3 in succession.

Application of Bayesian Methodology
Bayesian ELM model fit for the in-plane deviations of four cylinders.

Deviation modeling of cylinders under new processes via T (·).

Deviation modeling of new shapes and processes via T (·) and δs′(·).

Broader Impact and Future Work
Our new Bayesian neural network methodology effectively utilizes small
samples of data to automate and facilitate deviation modeling for a broad
class of disparate shapes across distinct processes in CPAMS.

The broader impact of our methodology is smarter control of general
CPAMS, with the potential of immediate practical application for a large
community of AM users.

Our next step is to incorporate the algorithms of our methodology into our
cloud-based app for dynamic and automatic recalibration of CPAMS.
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