

Guessing Game

I'm thinking of a research area where...

- Algorithms have recently improved by orders of magnitude
- Computers solve tasks better than humans
- Computers solve tasks without help from humans
- Big investments are being made by the government and companies like: Amazon, Apple, Facebook, Google, Intel, Microsoft
- It can be described using two letters; first one is A

(assert (forall ((lambda Real)) (let ((v 17 (+ x4 (* 60 lambda))) (v 11 (not bool.b19)) (v 10 (not bool.b18)) (v 6 (not bool.b17)) (v 8 (not bool.b21)) (v 3 (not bool.b23)) (v 9 (not bool.b20)) (v 7 (not bool.b22))) (let ((v 4 (and v 9 v 7))) (let ((v 2 (not v 4)) (v 13 (and v 10 v 11))) (let ((v 12 (not v 13)) (v 14 (and v 9 v 13))) (let ((v 15 (and v_8 v_14))) (let ((v_16 (and v_7 v_15)) (v_40 (<= (* 1 v_17) 4820))) (let ((v_72 (not v_40)) (v_99 (not bool.b24)) (v_127 (+ x3 (* (/ (- 1) 20) lambda)))) (let ((v_1 (* 1 v_12 7))) (let ((v 0 (+ v 1 (* (/ 1 1200) v 17)))) (let ((v 96 (<= v 0 (/ 20 3))) (v 5 (<= v 1 0))) (let ((v 42 (not v 5)) (v 137 (<= v 1 40))) (let ((v 19 (not v 137)) (v 21 (* (-1) v 17))) (let ((v 43 (<= v 21 (- 4100)))) (let ((v 38 (not v 43)) (v 20 (not (<= v 1 33)))) (let ((v 35 (and bool.b17 (not (and v 19 (and v 38 v 20)))))) (let ((v 18 (not v 3 5)) (v 45 (<= v 21 (- 4500)))) (let ((v 78 (not v 45)) (v 39 (<= v 21 (- 4910)))) (let ((v 94 (not v 39))) (let ((v 57 (not (and bool.b19 (not (and v 19 (and v 20 v 94))))))) (let ((v_22 (not (and v_18 (not (and bool.b18 (not (and v_19 (and v_20 v_78))))) v_57)))) (let ((v_32 (and bool.b23 v_22))) (let ((v_36 (not v_32)) (v_29 (and bool.b22 v_2 2))) (let ((v 33 (not v 29)) (v 26 (and bool.b21 v 22))) (let ((v 30 (not v 26)) (v 24 (and bool.b20 v 22))) (let ((v 27 (not v 24)) (v 23 (and bool.b18 v 22)) (v 47 (and bool. b19 v_22))) (let ((v_28 (and (not v_23) (not v_47)))) (let ((v_25 (not v_28)) (v_31 (and v_27 v_28))) (let ((v_34 (and v_30 v_31))) (let ((v_37 (and v_33 v_34)) (v_123 (<= (+ v 1 (* (/ 1 15) v 17)) (/ 964 3)))) (let ((v 121 (not v 123))) (let ((v 101 (and v 5 v 121))) (let ((v 67 (not v 101)) (v 49 (and v 38 v 35)) (v 48 (not (and bool.b19 v 39)))) let ((v 50 (and v 48 v 36)) (v 41 (and v 5 v 24))) (let ((v 59 (not (and v 40 v 41)))) (let ((v 52 (and v 33 v 59)) (v 58 (not (and v 72 v 41)))) (let ((v 54 (and v 30 v 58)) (v_44 (not (and bool.b17 v_43))) (v_56 (and bool.b18 v_45))) (let ((v_46 (not v_56))) (let ((v_129 (and v_44 v_46))) (let ((v_61 (and v_44 (not (and v_129 v_23)))) (v_77 (and v_ 46 (not (and v 47 (and v 46 v 48)))))) (let ((v 55 (and (not (and v 42 v 24)) (and v 61 v 77)))) (let ((v 53 (and v 54 v 55))) (let ((v 51 (and v 52 v 53))) (let ((v 68 (not (a nd v 49 (not (and v 50 v 51))))) (v 69 (not v 49)) (v 62 (and bool.b24 (not (and v 18 v 57))))) (let ((v 60 (not (and v 56 (not v 62))))) (let ((v 65 (and v 60 (not (and v 24 (and v 58 (and v 59 v 60))))) (v 63 (not (and v 56 v 62)))) (let ((v 64 (and v 63 (not (and v 47 (and v 48 v 63)))))) (let ((v 66 (not (and v 61 v 64))) (v 79 (not v 61)) (v 70 (not v_64)) (v_71 (not v_65))) (let ((v_83 (not (and v_39 v_70)))) (let ((v_90 (and v_50 v_83)) (v_73 (and v_5 v_71))) (let ((v_76 (not (and v_40 v_73)))) (let ((v_88 (and v_5 2 v 76)) (v 74 (not (and v 72 v 73)))) (let ((v 86 (and v 54 v 74)) (v 81 (and bool.b17 v 45))) (let ((v 75 (not (and v 99 v 81)))) (let ((v 84 (and v 75 (not (and v 71 (and v 74 (and v_75 v_76)))))) (v_80 (and v_78 v_79))) (let ((v_108 (not (and (not v_77) v_80))) (v_93 (not v_80)) (v_82 (not (and bool.b24 v_81)))) (let ((v_95 (and v_82 (not (and v 70 (and v_82 v_83)))))) (let ((v_87 (and v_93 v_95))) (let ((v_85 (not v_87)) (v_92 (not v_84)) (v_89 (and v_84 v_87))) (let ((v_91 (and v_86 v_89)) (v_105 (and v_42 v_92))) (l et ((v 107 (not v 105)) (v 130 (and v 94 (not v 95)))) (let ((v 106 (not v 130))) (let ((v 120 (and v 22 (and v 107 (and (and v 69 v 93) v 106)))) (v 125 (+ v 1 (* (/ 1 20) v 1 7))) (let ((v 126 (not (<= v 125 241))) (v 97 (not (and bool.b24 v 56)))) (let ((v 98 (not (and v 97 (not (and bool.b19 (and v 48 v 97))))))) (let ((v 114 (and (not (and v 39 (not (and v 82 (not (and v 98 (and (not (and v 39 v 98)) v 82)))))) v 90)) (v 100 (not (and v 99 v 56)))) (let ((v 102 (not (and v 100 (not (and bool.b20 (and (and v 100 (not (and v 40 (and bool.b20 v 5)))) (not (and bool.b20 v 101)))))))) (let ((v 103 (and v 5 v 102))) (let ((v 104 (and v 5 (not (and v 75 (not (and v 102 (and (not (and v 72 v 103) (and (not (and v 40 v 103)) v 75)))))))) (let ((v 112 (and (not (and v 40 v 104)) v 88)) (v 110 (and (not (and v 72 v 104)) v 86)) (v 111 (and v 93 v 106))) (let ((v 109 (no t v_111)) (v_118 (not v_110)) (v_113 (and v_107 v_111)) (v_117 (not v_112))) (let ((v_115 (and v_110 v_113)) (v_116 (not v_114))) (let ((v_133 (not (and v_5 (and v_40 (not (and v 68 (not (and v 69 (not (and (not (and v 114 (not (and (not (and v 112 (not (and (not (and v 110 (not (and v 105 v 109))) (not (and v 107 (not (and v 108 v 109)))))))) (not (and v 118 (not v 113)))))) (not (and v 117 (not v 115)))))) (not (and v 116 (not (and v 112 v 115))))))) (v 119 (not (and v 114 v 112))) (v 122 (<= v 1 20))) (let ((v 135 (and v 122 (and v 121 v 105))) (v 124 (and v 122 (and v 123 v 105)))) (let ((v 143 (not v 124)) (v 128 (not (<= (* (- 1) v 127) (- 20)))) (v 138 (and bool.b17 v 38)) (v 140 (and v 78 (not (and v 44 (not (and bool.b18 v 129)))))) (let ((v 134 (and (and (not (and v 128 v 138)) (not (and v 128 v 140))) (not (and v 128 v 130)))) (v 132 (and nd v 114 (not (and v 131 (not (and v 105 v 117))))) (not (and v 116 v 131))))) (not (and v 118 (not (and v 114 v 132)))))) v 133)))) (not (and v 67 (not v 134))))) (v 13 6 (+ v 1 (* (/ 3 20) v 17))) (v 141 (<= v 1 45))) (let ((v 139 (and v 141 v 20)) (v 142 (not v 141))) (or (or (exists ((lambdaprime Real)) (let ((v 145 (* 1 (+ x3 (* (/ (- 1) 2 0) lambdaprime))))) (let ((v 146 (not (<= v 145 40))) (v 148 (* (- 1) (+ x4 (* 60 lambdaprime)))) (v 147 (not (<= v 145 33)))) (and (and (<= 0 lambdaprime) (<= lambdaprime lamb da)) (not (and (not (and bool.b17 (not (and v_146 (and (not (<= v_148 (- 4100))) v_147))))) (not (and bool.b18 (not (and v_146 (and v_147 (not (<= v_148 (- 4500))))))))) not (and bool.b19 (not (and v 146 (and v 147 (not (<= v_148 (- 4910))))))))))))))) (< lambda 0)) (and (not (and v_96 (and (not (<= v_0 (/ 241 60))) (and (not (and v_42 (not (and v 11 (and v 10 (and v 6 (and (not (and v 8 (not (and v 3 (not (and v 2 (not (and bool.b20 bool.b22))))) (not (and bool.b23 v 2))))) (not (and bool.b21 (not (and v (and bool.b18 bool.b19))))) (not (and bool.b20 v_12))))) (not (and bool.b21 (not v_14)))))) (not (and bool.b22 (not v_15)))))) (not (and bool.b23 (not v_16)))))) (not (and bool.b17 (not (and v 3 v 16))))) v 40)))))) (not (and (and (not (and v 18 (not (and (not (and v 36 (not (and v 33 (not (and (not (and v 30 (not (and (not (and v 17 (not (and v 17 (not (and v 17 (not (and v 17 (not (and v 18 (not (and (not (and v 18 (not (and v (not (and v_25 (not (and bool.b19 v_23))))) (not (and v_24 v_25))))) (not (and v_26 (not v_31))))) (not (and v 29 (not v_34)))))) (not (and v_32 (not v_37)))))) (not (an d v 35 (not (and v 36 v 37))))) (not (and v 67 (not (and v 68 (not (and v 69 (not (and (not v and (not v 51)))) (not (and v 50 (not (and (not v 52) (not v 53))) (not (and v 52 (not (and (not (and (not v 54) (not v 55))) (not (and v 54 (not (and (not (and v 65 (not (and v 66 (not (and v 79 v 70)))))) (not (and v 71 v 66))))))) 8 v_85)))) (not (and v_92 v_85)))))) (not (and (not v_86) (not v_89)))))) (not (and (not v_88) (not v_91)))))) (not (and v_90) (not (and v_88 v_91))))))) (not (and (no t (and v 120 (and v 96 (and v 126 (and v 133 (not (and v 42 (not (and v 69 (and v 107 (and v 106 (and v 93 (and (not (and v 110 (not (and v 119 (not (and v 116 v 117)))))) (not

Automated Reasoning and the future of Formal Methods

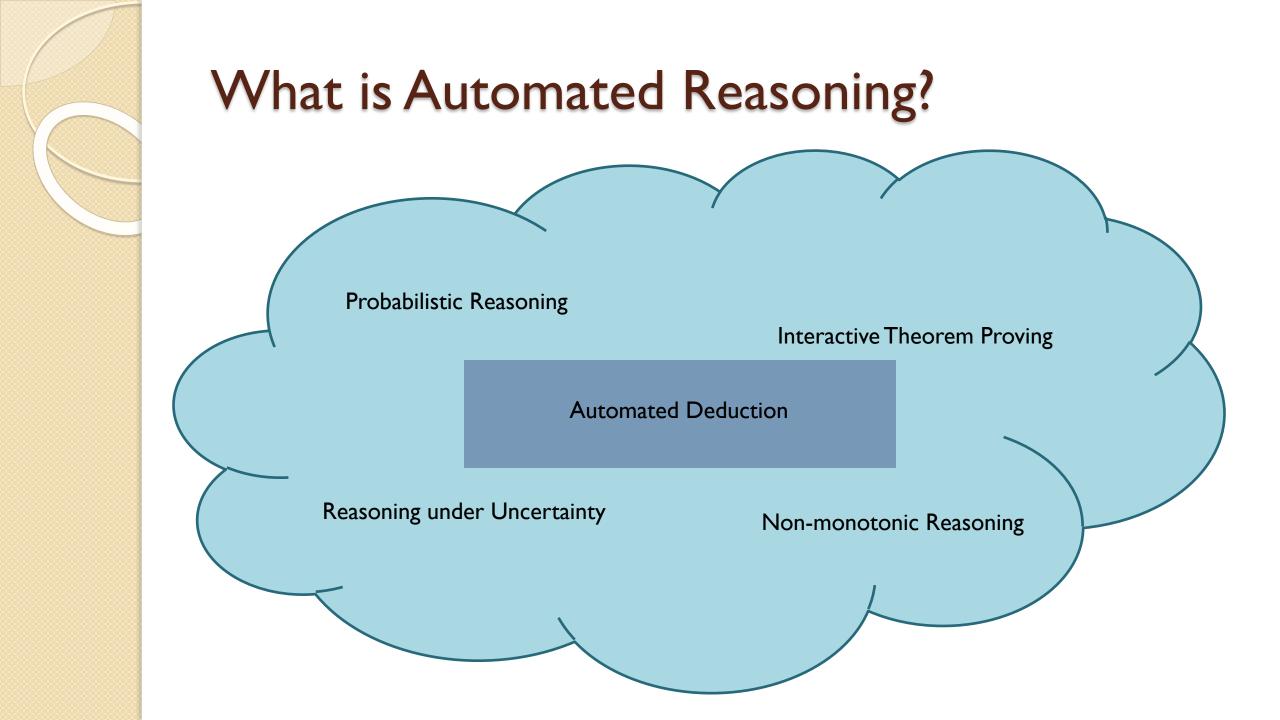
0

Clark Barrett Stanford University

> FM@Scale October 9, 2019 SRI

Outline

- Improving Core AR Engines
- The Many Uses of Proofs
- Improving Usability



Automated Reasoning Engines

- Find p and q:
 - $(p \lor \neg q) \land (\neg p \lor q)$
 - Boolean Satisfiability (SAT)
 - The original NP-complete problem
- Prove or disprove:
 - $\exists x. (P(x) \rightarrow \forall y. P(y))$
 - Automated Theorem Proving (ATP)
 - Pure first-order logic
 - Semi-decidable
- Find a solution:
 - $a = b + 2 \land A = write(B, a + 1, 4) \land (A[b + 3] = 2 \lor f(a 1) \neq f(b + 1))$
 - Satisfiability Modulo Theories (SMT)
 - Language includes Boolean logic, first-order logic, and certain built-in theories
 - Theory examples: arithmetic, arrays, functions, bitvectors, strings, sets, etc.
 - From NP-complete to undecidable

What is Automated Reasoning Good For?

 Used for lots of things, but one big success is when coupled with *formal methods* to check whether a system conforms to some desired property

• Safety

- Critical systems don't fail catastrophically
- Security
 - Systems are free from vulnerabilities
- Verification
 - Systems behave as intended

New Capabilities of Automated Reasoning

• Faster

 Off-the shelf performance of tools has increased by orders of magnitude

• Stronger

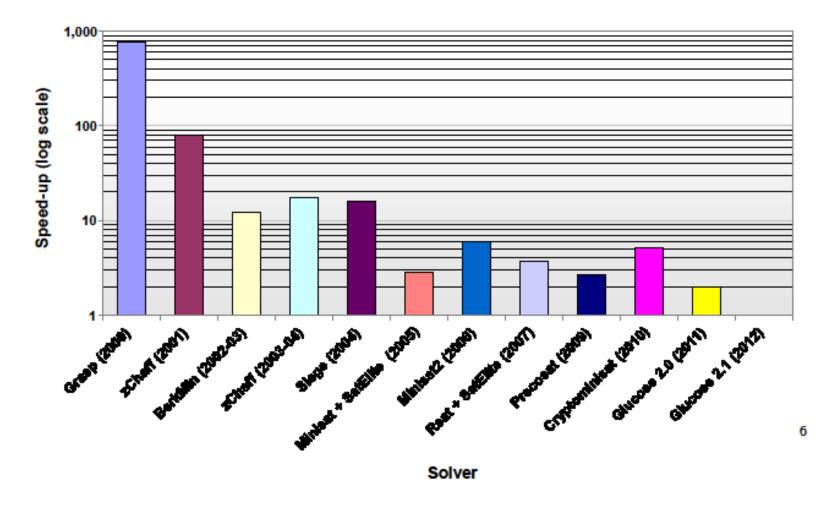
 More deductive power in modern tools (e.g. increasing number of supported theories in SMT solvers)

• Better

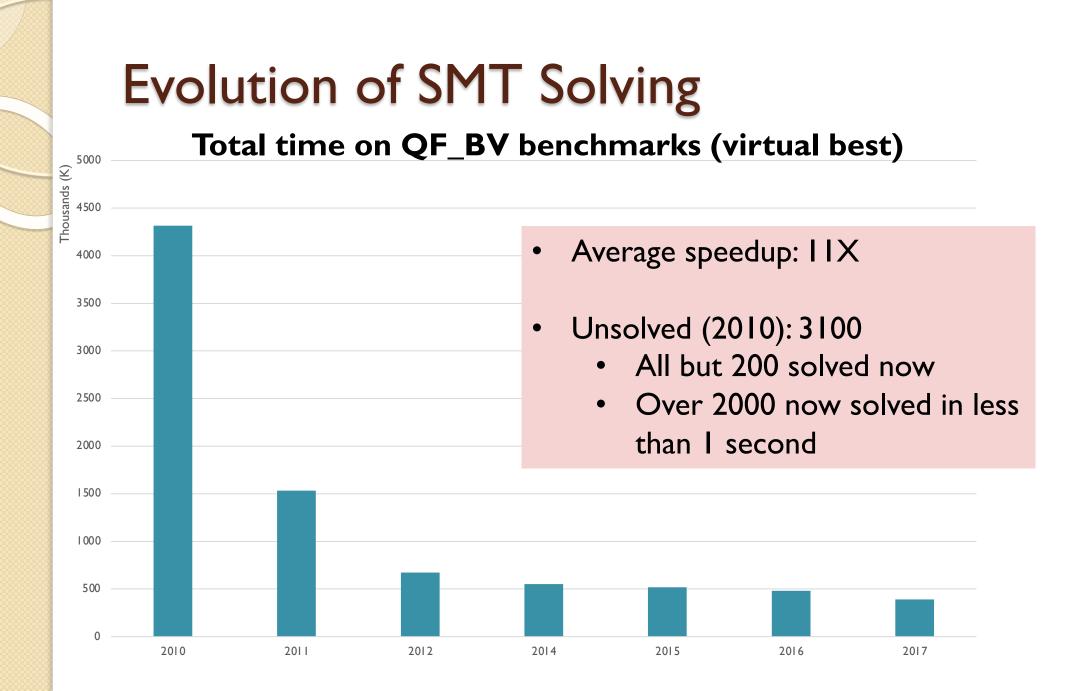
 Flexible, adaptable, extensible – modern AR platforms can be modified for new challenging problems

Some Experience with SAT Solving

Speed-up of 2012 solver over other solvers



Moshe Y. Vardi, "Machine Learning and Logic: Fast and Slow Thinking" Summit on Machine Learning Meets Formal Methods, July 2018



Automated Reasoning: Opportunities

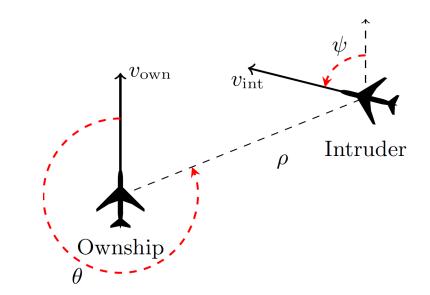
- Core engines can still improve dramatically
- Need more people developing AR engines
 - Fund system-building proposals in AR!
 - Competition for new tools?
- Co-evolve engines with applications
 - Example: verification of neural networks
- Pursue parallelization
 - Some promising directions in SAT (cube and conquer)
- Use machine learning to tune configurations and strategies

Automated Reasoning: Opportunities

- Core engines can still improve dramatically
- Need more people developing AR engines
 - Fund system-building proposals in AR!
 - Competition for new tools?
- Co-evolve engines with applications
 - Example: verification of neural networks
- Pursue parallelization
 - Some promising directions in SAT (cube and conquer)
- Use machine learning to tune configurations and strategies

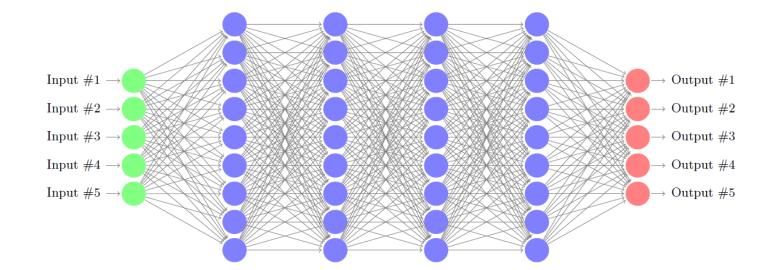
Motivation: ACAS Xu

- Airborne Collision-Avoidance System for drones
- A new standard being developed by the FAA
- Produce advisories:
 - I. Strong left (SL)
 - 2. Weak left (L)
 - 3. Strong right (SR)
 - 4. Weak right (R)
 - 5. Clear of conflict (COC)



- Best-performing implementation uses 45 deep neural networks
 - How do we verify them?

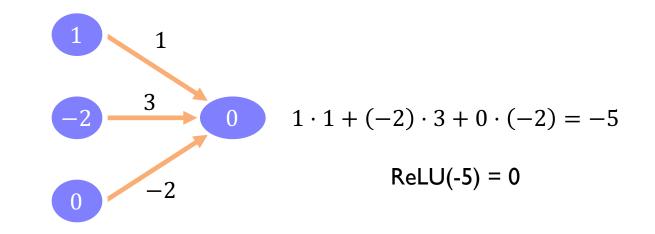
Deep Neural Nets (DNNs)



- ACAS Xu networks: 8 layers, 310 nodes (x 45)
- Naïve translation to SMT scales to networks with ~20 nodes
- NP-Complete problem!

The Culprits: Rectified Linear Units (ReLUs)

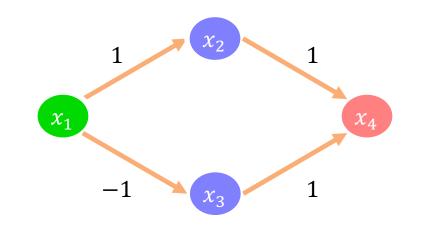
- $\operatorname{ReLU}(x) = \max(0, x)$
 - $x \ge 0$: active case, return x
 - x < 0: inactive case, return 0
 - Example:



Reluplex: SMT Solver for Neural Networks

- A technique for solving linear programs with ReLUs
 - Can encode neural networks as input
- Extends the simplex method
- Does not require case splitting in advance
 - ReLU constraints satisfied incrementally
 - Split only if we must
- Scales to the ACAS Xu networks
 - An order of magnitude larger networks than previously possible

A Simple Example



Property being checked:
 Is it possible that x₁ ∈ [0,1] and x₄ ∈ [0.5,1]?

Encoding Networks

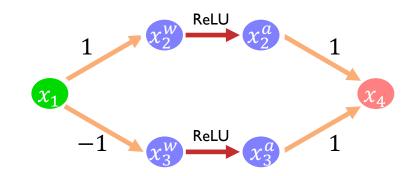
• Introduce equalities:

$$x_{2}^{w} - x_{1} = 0$$

$$x_{3}^{w} + x_{1} = 0$$

$$x_{4} - x_{3}^{a} - x_{2}^{a} = 0$$

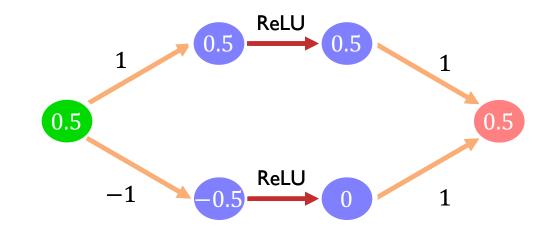
- Set bounds:
 - $x_{1} \in [0,1]$ $x_{4} \in [0.5,1]$ $x_{2}^{w}, x_{3}^{w} \in (-\infty,\infty)$ $x_{2}^{a}, x_{3}^{a} \in [0,\infty)$
- Special ReLU constraints: $x_2^a = ReLU(x_2^w)$ $x_3^a = ReLU(x_3^w)$



Reluplex: Example

$x_{\$} = x_2^w - \underline{x}_{\$}$				
$\mathbf{x}_{\mathbf{g}}^{W} = \mathbf{x}_{\mathbf{g}}^{W} + \mathbf{x}_{\mathbf{g}}^{W} - \mathbf{x}_{\mathbf{z}}^{W}$	Lower Bound	Variable	Assignment	Upper Bound
$x_{\rm Z}^{a} = x_{\rm A} - x_{\rm B}^{a} - x_{\rm Z}^{a}$	0	<i>x</i> ₁	0.5	1
Operation:		x_2^w	0.5	
	0	x_2^a	0.5	
$Suggess x_g^w \pm 0.5$		x_3^w	-0.5	
	0	x_3^a	0	
	0.5	x_4	0.5	1
	0	<i>x</i> ₅	0.5	0
	0	<i>x</i> ₆	0.5	0
	0	<i>x</i> ₇	0.5	0

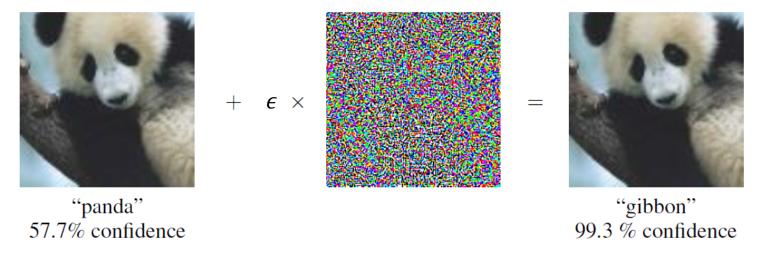
The Assignment is a Solution



Property being checked:
 Is it possible that x₁ ∈ [0,1] and x₄ ∈ [0.5,1]?

Robustness to Adversarial Inputs

• Slight input perturbations cause misclassification



Goodfellow et al., 2015

• We can *prove* that these cannot occur (for given input and amount of noise)

Outline

- Improving Core AR Engines
- The Many Uses of Proofs
- Improving Usability

The MAICHNER ?

The Need for Proofs

- If an AR engine returns a model/counter-example, it can be checked
- But if it returns unsatisfiable, the result has to be trusted
- ...unless the tool can produce an independentlycheckable proof
- There is already a standard for SAT solvers

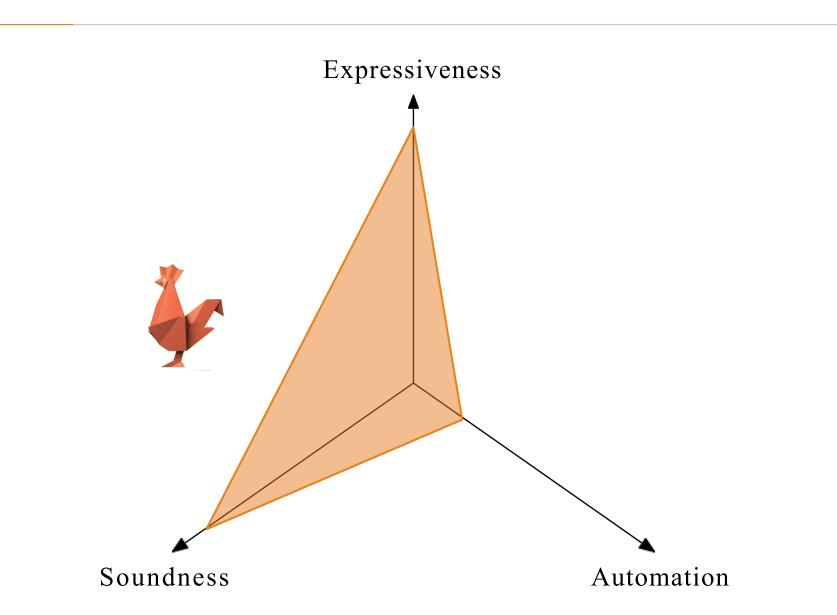
What are Proofs good for?

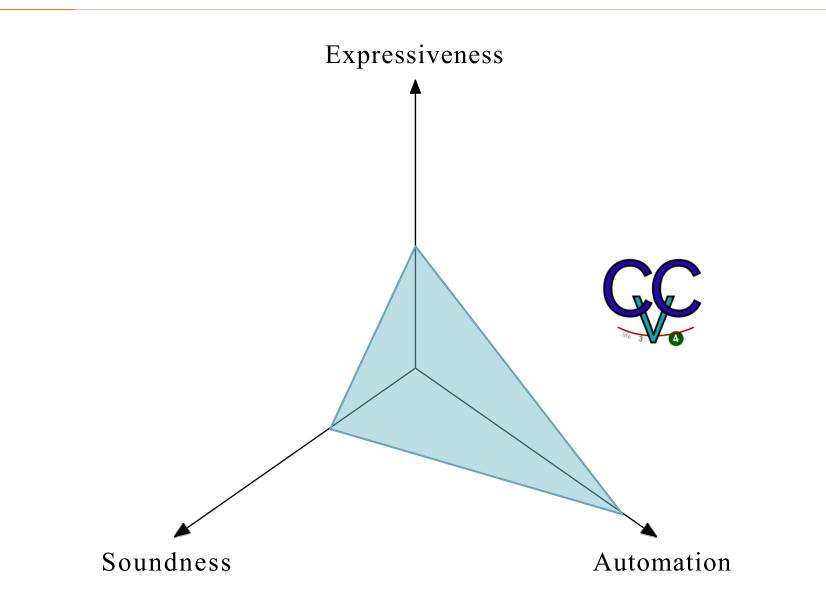
- Reducing the trusted code base
- Improving code quality of AR engines
- Trusted interoperability with other tools
- Can be mined for additional information (e.g. interpolants)
- Auditable trail for building assurance cases

What are Proofs good for?

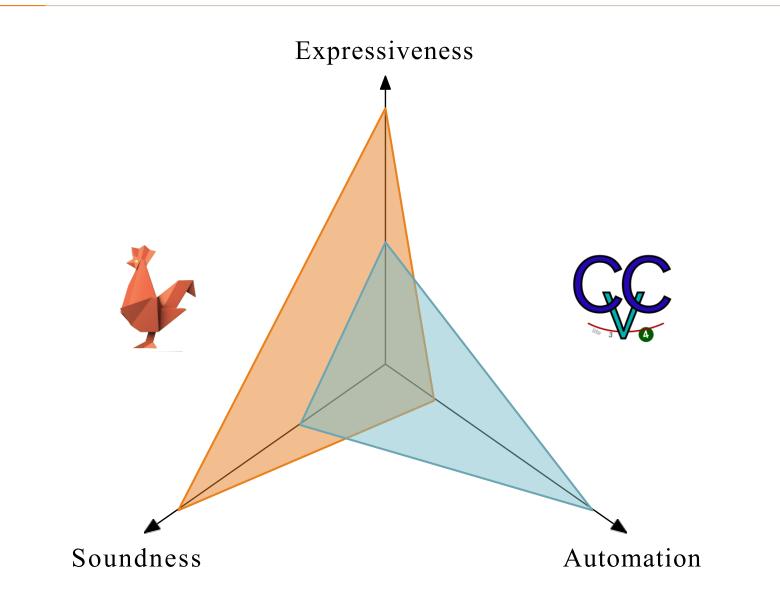
- Reducing the trusted code base
- Improving code quality of AR engines
- Trusted interoperability with other tools
- Can be mined for additional information (e.g. interpolants)
- Auditable trail for building assurance cases

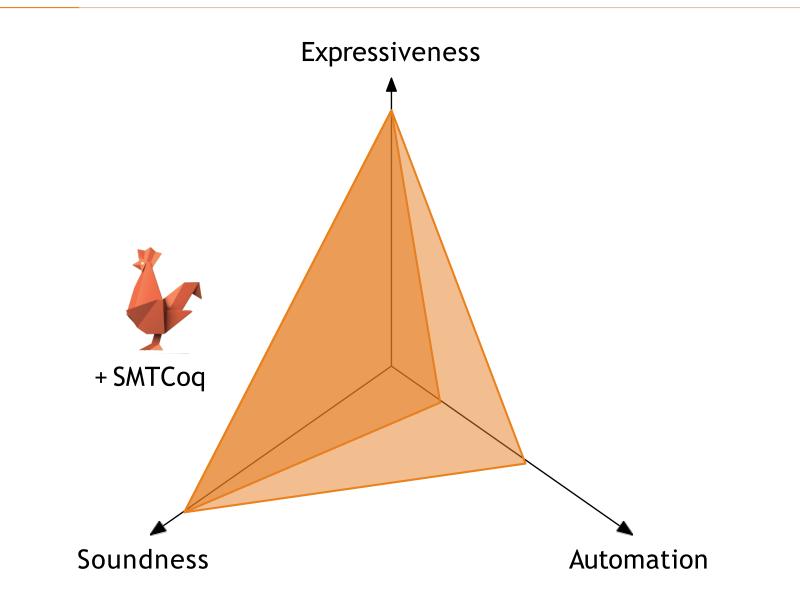
Proof assistants vs SMT solvers

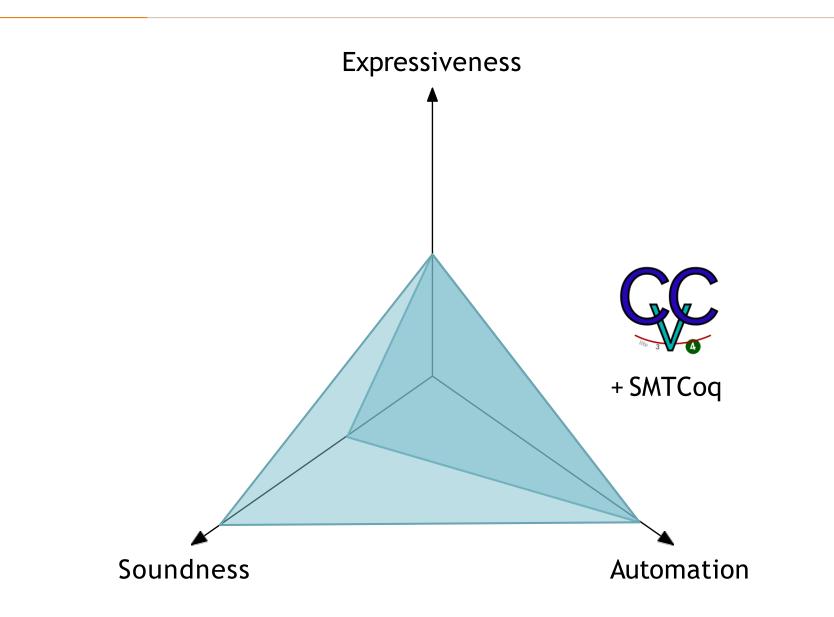


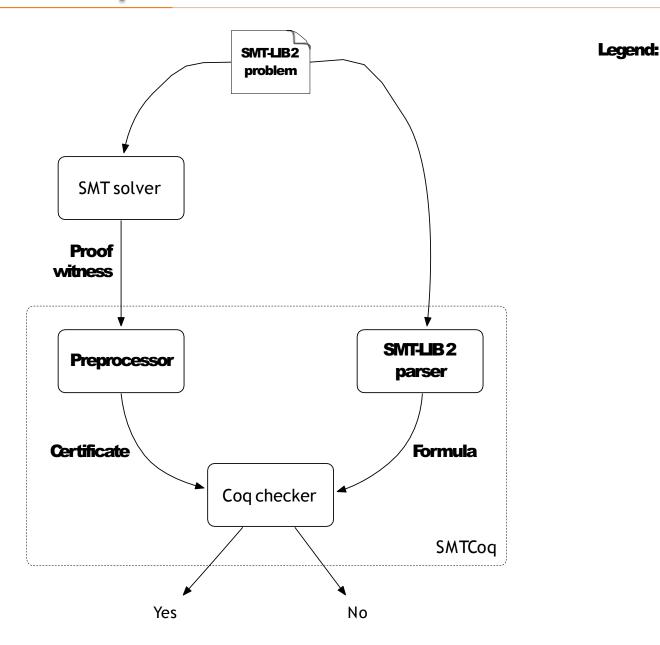


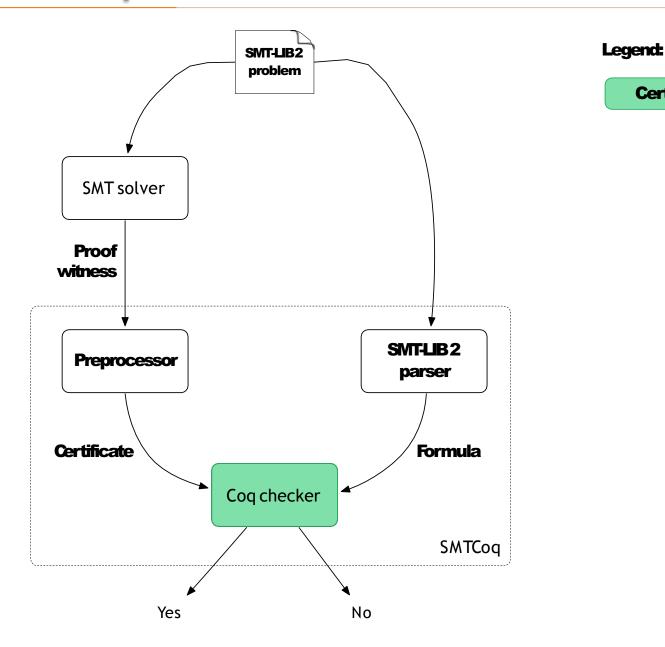
Proof assistants vs SMT solvers



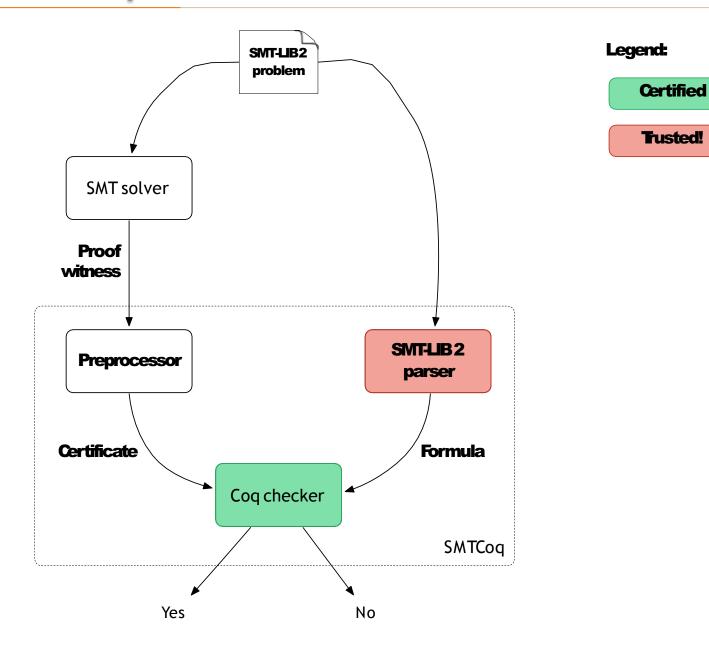




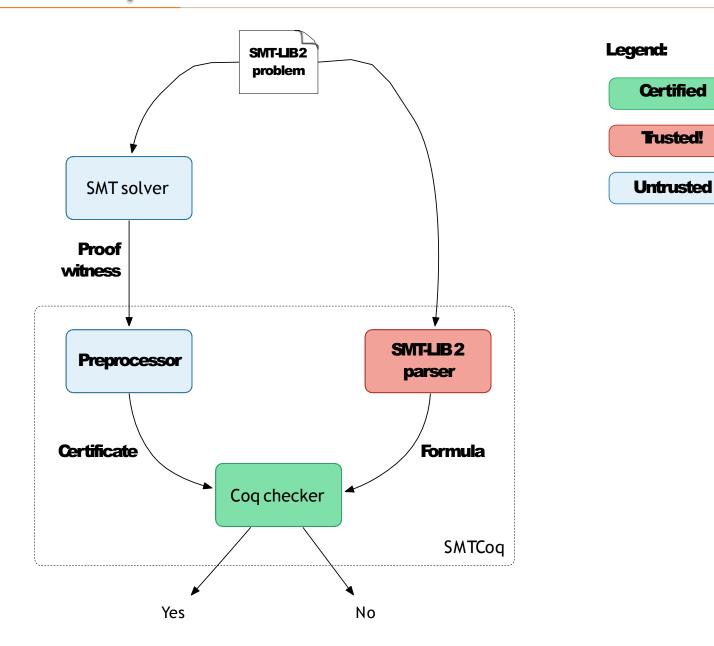




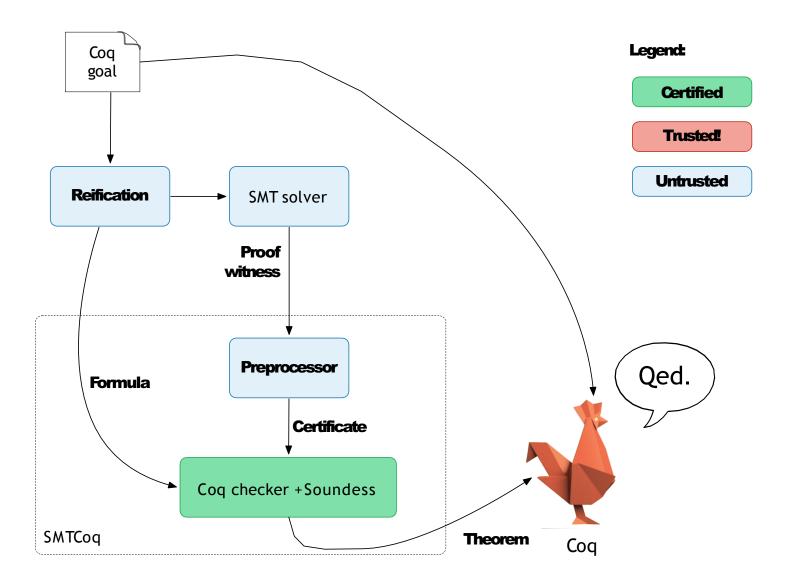
end: Certified



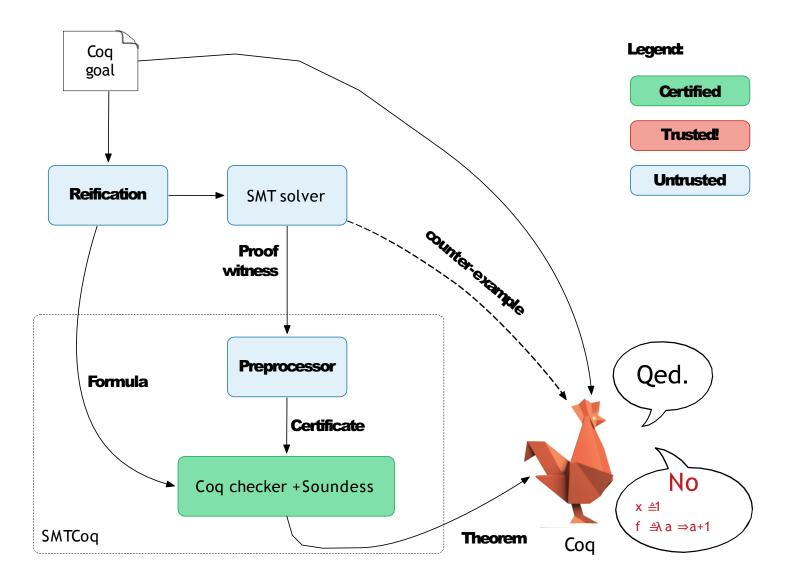
10



SMTCoq from within Coq



SMTCoq from within Coq



Outline

- Improving Core AR Engines
- The Many Uses of Proofs
- Improving Usability

The Usability Challenge

- Experts can do great things with formal tools
- Need to find more ways for non-experts to benefit from formal tools
- Develop Tools and Techniques that use formal under the hood but expose a simple interface for users

The Usability Challenge

- Experts can do great things with formal tools
- Need to find more ways for non-experts to benefit from formal tools
- Develop Tools and Techniques that use formal under the hood but expose a simple interface for users
 - \circ Example: Symbolic QED for hardware verification

QED

- Technique developed by Subhasish Mitra's group
- Key idea
 - Use regular and shadow values for registers and memory
 - Apply *duplicate and check* transformation to improve tests

QED

- Technique developed by *Subhasish Mitra*'s group
- Key idea
 - Use regular and shadow values for registers and memory
 - Apply *duplicate and check* transformation to improve tests

Example

	Regular	Shadow
Registers	R0R15	R16R31
Memory	0×10000 – 0×1FFFF	0×20000 – 0×2FFFF

QED

- Technique developed by Subhasish Mitra's group
- Key idea
 - Use regular and shadow values for registers and memory
 - Apply *duplicate and check* transformation to improve tests

Example

	Regula	r	Shadow
Registers	R0RI	5	R16R31
Memory	0×1000	0 – 0×1FFFF	0×20000 – 0×2FFFF
	LD R1, [0x10000] LD R2, [0x10040] 	LD R1, [0> LD R2, [0> → LD R17, [0 LD R18, [0 CMP R1 = CMP R2 =	(10040] 0x20000] 0x20040] == R17

QED features

- Improves *coverage* and *speed* of bug detection with respect to standard testing
- Reduces *error latency* (time between when bug is activated and detected)

QED limitations

- *Not exhaustive* might miss bugs
- Error latency can still be *hundreds of instructions*

QED features

- Improves *coverage* and *speed* of bug detection with respect to standard testing
- Reduces *error latency* (time between when bug is activated and detected)

QED limitations

- Not exhaustive might miss bugs
- Error latency can still be *hundreds of instructions*

SoC Verification

Idea

• Combine QED with *Bounded Model Checking*

46

Symbolic QED

Result: Symbolic QED

- Collaboration with Subhasish Mitra's group ¹³
- *Idea*: use BMC to search through *all possible* QED tests
 - Initial state: **QED-consistent** (regular and shadow values match)
 - Input must be sequence of regular instructions followed by duplicate instructions
 - Property: final state must be QED-consistent

Addresses limitations of QED

- Exhaustively covers *all possible* QED tests
- Finds *minimum length* QED test that triggers bug

Symbolic QED

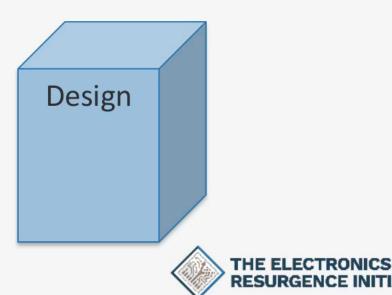
Result: Symbolic QED

- Collaboration with Subhasish Mitra's group ¹³
- *Idea*: use BMC to search through *all possible* QED tests
 - Initial state: QED-consistent (regular and shadow values match)
 - Input must be sequence of regular instructions followed by duplicate instructions
 - Property: final state must be QED-consistent

Addresses limitations of QED

- Exhaustively covers *all possible* QED tests
- Finds *minimum length* QED test that triggers bug

Demo: RIDECORE (RISC-V)



Conclusions

- Improvements in core AR engines have big payoffs
- Significant progress can be made by evolving engines driven by new applications
 - But need to build more talent and expertise in solver development
- An ecosystem of interchangeable proofs would enable high-trust interoperability
- Need to find creative ways to make formal power accessible to non-experts

(assert (forall ((lambda Real)) (let ((v 17 (+ x4 (* 60 lambda))) (v 11 (not bool.b19)) (v 10 (not bool.b18)) (v 6 (not bool.b17)) (v 8 (not bool.b21)) (v 3 (not bool.b23)) (v 9 (not bool.b20)) (v 7 (not bool.b22))) (let ((v 4 (and v 9 v 7))) (let ((v 2 (not v 4)) (v 13 (and v 10 v 11))) (let ((v 12 (not v 13)) (v 14 (and v 9 v 13))) (let ((v 15 (and v_8 v_14))) (let ((v_16 (and v_7 v_15)) (v_40 (<= (* 1 v_17) 4820))) (let ((v_72 (not v_40)) (v_99 (not bool.b24)) (v_127 (+ x3 (* (/ (- 1) 20) lambda)))) (let ((v_1 (* 1 v_12 7))) (let ((v 0 (+ v 1 (* (/ 1 1200) v 17)))) (let ((v 96 (<= v 0 (/ 20 3))) (v 5 (<= v 1 0))) (let ((v 42 (not v 5)) (v 137 (<= v 1 40))) (let ((v 19 (not v 137)) (v 21 (* (-1) v 17))) (let ((v 43 (<= v 21 (- 4100)))) (let ((v 38 (not v 43)) (v 20 (not (<= v 1 33)))) (let ((v 35 (and bool.b17 (not (and v 19 (and v 38 v 20)))))) (let ((v 18 (not v 3 5)) (v 45 (<= v 21 (- 4500)))) (let ((v 78 (not v 45)) (v 39 (<= v 21 (- 4910)))) (let ((v 94 (not v 39))) (let ((v 57 (not (and bool.b19 (not (and v 19 (and v 20 v 94))))))) (let ((v_22 (not (and v_18 (not (and bool.b18 (not (and v_19 (and v_20 v_78))))) v_57)))) (let ((v_32 (and bool.b23 v_22))) (let ((v_36 (not v_32)) (v_29 (and bool.b22 v_2 2))) (let ((v 33 (not v 29)) (v 26 (and bool.b21 v 22))) (let ((v 30 (not v 26)) (v 24 (and bool.b20 v 22))) (let ((v 27 (not v 24)) (v 23 (and bool.b18 v 22)) (v 47 (and bool. b19 v_22))) (let ((v_28 (and (not v_23) (not v_47)))) (let ((v_25 (not v_28)) (v_31 (and v_27 v_28))) (let ((v_34 (and v_30 v_31))) (let ((v_37 (and v_33 v_34)) (v_123 (<= (+ v 1 (* (/ 1 15) v 17)) (/ 964 3)))) (let ((v 121 (not v 123))) (let ((v 101 (and v 5 v 121))) (let ((v 67 (not v 101)) (v 49 (and v 38 v 35)) (v 48 (not (and bool.b19 v 39)))) let ((v 50 (and v 48 v 36)) (v 41 (and v 5 v 24))) (let ((v 59 (not (and v 40 v 41)))) (let ((v 52 (and v 33 v 59)) (v 58 (not (and v 72 v 41)))) (let ((v 54 (and v 30 v 58)) (v_44 (not (and bool.b17 v_43))) (v_56 (and bool.b18 v_45))) (let ((v_46 (not v_56))) (let ((v_129 (and v_44 v_46))) (let ((v_61 (and v_44 (not (and v_129 v_23)))) (v_77 (and v_ 46 (not (and v 47 (and v 46 v 48)))))) (let ((v 55 (and (not (and v 42 v 24)) (and v 61 v 77)))) (let ((v 53 (and v 54 v 55))) (let ((v 51 (and v 52 v 53))) (let ((v 68 (not (a nd v 49 (not (and v 50 v 51))))) (v 69 (not v 49)) (v 62 (and bool.b24 (not (and v 18 v 57))))) (let ((v 60 (not (and v 56 (not v 62))))) (let ((v 65 (and v 60 (not (and v 24 (and v 58 (and v 59 v 60))))) (v 63 (not (and v 56 v 62)))) (let ((v 64 (and v 63 (not (and v 47 (and v 48 v 63)))))) (let ((v 66 (not (and v 61 v 64))) (v 79 (not v 61)) (v 70 (not v_64)) (v_71 (not v_65))) (let ((v_83 (not (and v_39 v_70)))) (let ((v_90 (and v_50 v_83)) (v_73 (and v_5 v_71))) (let ((v_76 (not (and v_40 v_73)))) (let ((v_88 (and v_5 2 v 76)) (v 74 (not (and v 72 v 73)))) (let ((v 86 (and v 54 v 74)) (v 81 (and bool.b17 v 45))) (let ((v 75 (not (and v 99 v 81)))) (let ((v 84 (and v 75 (not (and v 71 (and v 74 (and v_75 v_76)))))) (v_80 (and v_78 v_79))) (let ((v_108 (not (and (not v_77) v_80))) (v_93 (not v_80)) (v_82 (not (and bool.b24 v_81)))) (let ((v_95 (and v_82 (not (and v 70 (and v_82 v_83)))))) (let ((v_87 (and v_93 v_95))) (let ((v_85 (not v_87)) (v_92 (not v_84)) (v_89 (and v_84 v_87))) (let ((v_91 (and v_86 v_89)) (v_105 (and v_42 v_92))) (l et ((v 107 (not v 105)) (v 130 (and v 94 (not v 95)))) (let ((v 106 (not v 130))) (let ((v 120 (and v 22 (and v 107 (and (and v 69 v 93) v 106)))) (v 125 (+ v 1 (* (/ 1 20) v 1 7))) (let ((v 126 (not (<= v 125 241))) (v 97 (not (and bool.b24 v 56)))) (let ((v 98 (not (and v 97 (not (and bool.b19 (and v 48 v 97))))))) (let ((v 114 (and (not (and v 39 (not (and v 82 (not (and v 98 (and (not (and v 39 v 98)) v 82)))))) v 90)) (v 100 (not (and v 99 v 56)))) (let ((v 102 (not (and v 100 (not (and bool.b20 (and (and v 100 (not (and v 40 (and bool.b20 v 5)))) (not (and bool.b20 v 101)))))))) (let ((v 103 (and v 5 v 102))) (let ((v 104 (and v 5 (not (and v 75 (not (and v 102 (and (not (and v 72 v 103) (and (not (and v 40 v 103)) v 75)))))))) (let ((v 112 (and (not (and v 40 v 104)) v 88)) (v 110 (and (not (and v 72 v 104)) v 86)) (v 111 (and v 93 v 106))) (let ((v 109 (no t v_111)) (v_118 (not v_110)) (v_113 (and v_107 v_111)) (v_117 (not v_112))) (let ((v_115 (and v_110 v_113)) (v_116 (not v_114))) (let ((v_133 (not (and v_5 (and v_40 (not (and v 68 (not (and v 69 (not (and (not (and v 114 (not (and (not (and v 112 (not (and (not (and v 110 (not (and v 105 v 109))) (not (and v 107 (not (and v 108 v 109)))))))) (not (and v 118 (not v 113)))))) (not (and v 117 (not v 115)))))) (not (and v 116 (not (and v 112 v 115))))))) (v 119 (not (and v 114 v 112))) (v 122 (<= v 1 20))) (let ((v 135 (and v 122 (and v 121 v 105))) (v 124 (and v 122 (and v 123 v 105)))) (let ((v 143 (not v 124)) (v 128 (not (<= (* (- 1) v 127) (- 20)))) (v 138 (and bool.b17 v 38)) (v 140 (and v 78 (not (and v 44 (not (and bool.b18 v 129)))))) (let ((v 134 (and (and (not (and v 128 v 138)) (not (and v 128 v 140))) (not (and v 128 v 130)))) (v 132 (and nd v 114 (not (and v 131 (not (and v 105 v 117))))) (not (and v 116 v 131))))) (not (and v 118 (not (and v 114 v 132)))))) v 133)))) (not (and v 67 (not v 134))))) (v 13 6 (+ v 1 (* (/ 3 20) v 17))) (v 141 (<= v 1 45))) (let ((v 139 (and v 141 v 20)) (v 142 (not v 141))) (or (or (exists ((lambdaprime Real)) (let ((v 145 (* 1 (+ x3 (* (/ (- 1) 2 0) lambdaprime))))) (let ((v 146 (not (<= v 145 40))) (v 148 (* (- 1) (+ x4 (* 60 lambdaprime)))) (v 147 (not (<= v 145 33)))) (and (and (<= 0 lambdaprime) (<= lambdaprime lamb da)) (not (and (not (and bool.b17 (not (and v_146 (and (not (<= v_148 (- 4100))) v_147))))) (not (and bool.b18 (not (and v_146 (and v_147 (not (<= v_148 (- 4500))))))))) not (and bool.b19 (not (and v 146 (and v 147 (not (<= v_148 (- 4910))))))))))))))) (< lambda 0)) (and (not (and v_96 (and (not (<= v_0 (/ 241 60))) (and (not (and v_42 (not (and v 11 (and v 10 (and v 6 (and (not (and v 8 (not (and v 3 (not (and v 2 (not (and bool.b20 bool.b22))))) (not (and bool.b23 v 2))))) (not (and bool.b21 (not (and v (and bool.b18 bool.b19))))) (not (and bool.b20 v_12))))) (not (and bool.b21 (not v_14)))))) (not (and bool.b22 (not v_15)))))) (not (and bool.b23 (not v_16)))))) (not (and bool.b17 (not (and v 3 v 16))))) v 40)))))) (not (and (and (not (and v 18 (not (and (not (and v 36 (not (and v 33 (not (and (not (and v 30 (not (and (not (and v 17 (not (and v 17 (not (and v 17 (not (and v 17 (not (and v 18 (not (and (not (and v 18 (not (and v (not (and v_25 (not (and bool.b19 v_23))))) (not (and v_24 v_25))))) (not (and v_26 (not v_31))))) (not (and v 29 (not v_34)))))) (not (and v_32 (not v_37)))))) (not (an d v 35 (not (and v 36 v 37))))) (not (and v 67 (not (and v 68 (not (and v 69 (not (and (not v and (not v 51)))) (not (and v 50 (not (and (not v 52) (not v 53))) (not (and v 52 (not (and (not (and (not v 54) (not v 55))) (not (and v 54 (not (and (not (and v 65 (not (and v 66 (not (and v 79 v 70)))))) (not (and v 71 v 66))))))) 8 v_85)))) (not (and v_92 v_85)))))) (not (and (not v_86) (not v_89)))))) (not (and (not v_88) (not v_91)))))) (not (and v_90) (not (and v_88 v_91))))))) (not (and (no t (and v 120 (and v 96 (and v 126 (and v 133 (not (and v 42 (not (and v 69 (and v 107 (and v 106 (and v 93 (and (not (and v 110 (not (and v 119 (not (and v 116 v 117)))))) (not

Backup: Proving and Satisfying

• A formula is a theorem iff its negation is not satisfiable:

$\models \Phi \iff \neg \Phi$ is unsatisfiable

• Theorem proving and satisfiability checking are dual

Backup: Case Splitting

- Linear programs (LPs) are easy to solve
- Piecewise-linear constraints are reducible to LPs
- Case Splitting:
 - Fix each ReLU to active or inactive state
 - Solve the resulting LP
 - If solution is found, we are done
 - Otherwise, backtrack and try other option
- State explosion: $300 \text{ ReLUs} \rightarrow 2^{300} \text{ checks}$

Backup: Soundness & Termination

- Soundness is straightforward
- Can we always find a solution using pivots and updates?
- No: sometimes get into a loop
- May have to split on ReLU variables
 - Do so lazily
 - $^\circ~$ In practice, about 10% of the ReLUs