
Guessing Game
I’m thinking of a research area where…

• Algorithms have recently improved by orders of magnitude

• Computers solve tasks better than humans

• Computers solve tasks without help from humans

• Big investments are being made by the government and companies like:
Amazon, Apple, Facebook, Google, Intel, Microsoft

• It can be described using two letters; first one is A

Automated Reasoning
and the future of
Formal Methods

Clark Barrett
Stanford University

FM@Scale
October 9, 2019

SRI

Outline

� Improving Core AR Engines

� The Many Uses of Proofs

� Improving Usability

What is Automated Reasoning?

Automated Deduction

Interactive Theorem Proving

Reasoning under Uncertainty Non-monotonic Reasoning

Probabilistic Reasoning

Automated Reasoning Engines
� Find 𝑝 and 𝑞:
◦ (𝑝 ∨ ¬𝑞) ∧ (¬𝑝 ∨ 𝑞)
◦ Boolean Satisfiability (SAT)
◦ The original NP-complete problem

� Prove or disprove:
◦ ∃𝑥. (𝑃 𝑥 → ∀𝑦. 𝑃 𝑦)
◦ Automated Theorem Proving (ATP)
◦ Pure first-order logic
◦ Semi-decidable

� Find a solution:
◦ 𝑎 = 𝑏 + 2 ∧ 𝐴 = 𝑤𝑟𝑖𝑡𝑒 𝐵, 𝑎 + 1,4 ∧ (𝐴 𝑏 + 3 = 2 ∨ 𝑓 𝑎 − 1 ≠ 𝑓 𝑏 + 1)
◦ Satisfiability Modulo Theories (SMT)
◦ Language includes Boolean logic, first-order logic, and certain built-in theories
◦ Theory examples: arithmetic, arrays, functions, bitvectors, strings, sets, etc.
◦ From NP-complete to undecidable

What is Automated Reasoning Good For?
� Used for lots of things, but one big success is when coupled

with formal methods to check whether a system conforms to
some desired property

� Safety
◦ Critical systems don’t fail catastrophically

� Security
◦ Systems are free from vulnerabilities

� Verification
◦ Systems behave as intended

New Capabilities of Automated Reasoning
� Faster
◦ Off-the shelf performance of tools has increased by orders of

magnitude

� Stronger
◦ More deductive power in modern tools (e.g. increasing number of

supported theories in SMT solvers)

� Better
◦ Flexible, adaptable, extensible – modern AR platforms can be

modified for new challenging problems

Evolution of SAT solving

Moshe Y. Vardi, “Machine Learning and Logic: Fast and Slow Thinking”
Summit on Machine Learning Meets Formal Methods, July 2018

Evolution of SMT Solving

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2010 2011 2012 2014 2015 2016 2017

T
ho

us
an

ds
 (

K
)

Total time on QF_BV benchmarks (virtual best)

• Average speedup: 11X

• Unsolved (2010): 3100
• All but 200 solved now
• Over 2000 now solved in less

than 1 second

Automated Reasoning: Opportunities

� Core engines can still improve dramatically
� Need more people developing AR engines
◦ Fund system-building proposals in AR!
◦ Competition for new tools?

� Co-evolve engines with applications
◦ Example: verification of neural networks

� Pursue parallelization
◦ Some promising directions in SAT (cube and conquer)

� Use machine learning to tune configurations and strategies

Automated Reasoning: Opportunities

� Core engines can still improve dramatically
� Need more people developing AR engines
◦ Fund system-building proposals in AR!
◦ Competition for new tools?

� Co-evolve engines with applications
◦ Example: verification of neural networks

� Pursue parallelization
◦ Some promising directions in SAT (cube and conquer)

� Use machine learning to tune configurations and strategies

� Airborne Collision-Avoidance System for drones
� A new standard being developed by the FAA

� Produce advisories:
1. Strong left (SL)
2. Weak left (L)
3. Strong right (SR)
4. Weak right (R)
5. Clear of conflict (COC)

� Best-performing implementation uses 45 deep neural
networks
◦ How do we verify them?

Motivation: ACAS Xu

Deep Neural Nets (DNNs)

� ACAS Xu networks: 8 layers, 310 nodes (x 45)

� Naïve translation to SMT scales to networks with ~20
nodes

� NP-Complete problem!

40

The Culprits: Rectified Linear Units
(ReLUs)

� ReLU(𝑥) = max(0, 𝑥)
◦ 𝑥 ≥ 0: active case, return 𝑥
◦ 𝑥 < 0: inactive case, return 0
◦ Example:

1

3

−2

21

0−2

−10

1 ⋅ 1 + −2 ⋅ 3 + 0 ⋅ −2 = −5

ReLU(-5) = 0

Reluplex: SMT Solver for Neural Networks

� A technique for solving linear programs with ReLUs
◦ Can encode neural networks as input

� Extends the simplex method
� Does not require case splitting in advance
◦ ReLU constraints satisfied incrementally
◦ Split only if we must

� Scales to the ACAS Xu networks
◦ An order of magnitude larger networks than previously possible

A Simple Example

� Property being checked:
Is it possible that 𝑥E ∈ [0,1] and 𝑥F ∈ [0.5,1]?

𝑥!

𝑥"

𝑥# 𝑥$

1

−1

1

1

Encoding Networks
� Introduce equalities:

� Set bounds:
𝑥E ∈ [0,1]
𝑥F ∈ 0.5,1
𝑥GH, 𝑥IH ∈ (−∞,∞)
𝑥GJ, 𝑥IJ ∈ 0,∞

� Special ReLU constraints:
𝑥GJ = 𝑅𝑒𝐿𝑈(𝑥GH)
𝑥IJ = 𝑅𝑒𝐿𝑈(𝑥IH)

𝑥GH − 𝑥E = 0
𝑥IH + 𝑥E = 0
𝑥F − 𝑥IJ − 𝑥GJ = 0

𝑥!%

𝑥"%

𝑥# 𝑥$

1

−1

1

1

𝑥!&

𝑥"&
ReLU

ReLU

𝑥' ≔ 𝑥' − 0.5𝑥(≔ 𝑥(− 0.5Success

𝑥E = 𝑥GH − 𝑥L

Reluplex: Example

𝑥L = 𝑥GH − 𝑥E
𝑥M = 𝑥IH + 𝑥E
𝑥N = 𝑥F − 𝑥IJ − 𝑥GJ

𝑥$ ≔ 𝑥$ + 0.5

Operation:

Lower
Bound

Variable Assignment Upper
Bound

0 𝑥# 0 1
𝑥!% 0 𝑥!)

0 𝑥!& 0 𝑥!
*

𝑥"% 0 𝑥")

0 𝑥"& 0 𝑥"
*

0.5 𝑥$ 0 1
0 𝑥' 0 0
0 𝑥(0 0
0 𝑥+ 0 0

0

00.5

00.5

𝑥N = 𝑥F − 𝑥IJ − 𝑥GJ𝑥GJ = 𝑥F − 𝑥IJ − 𝑥N

𝑥+ ≔ 𝑥+ − 0.5

0.5

0.5

𝑥!% ≔ 𝑥!% + 0.5
00.5

00.5

𝑥L = 𝑥GH − 𝑥E
𝑥M = 𝑥GH + 𝑥IH − 𝑥L

0.5

00.5

00.5

𝑥M = 𝑥GH + 𝑥IH − 𝑥L𝑥IH = 𝑥L + 𝑥M −𝑥GH

0.5

0−0.5

0.5

−0.5

0.5 0.5

1

−1

1

1

0.5

0
ReLU

ReLU

The Assignment is a Solution

0.5

−0.5

0.5 0.5

1

−1

1

1

0.5

0
ReLU

ReLU

� Property being checked:
Is it possible that 𝑥E ∈ [0,1] and 𝑥F ∈ [0.5,1]?

Robustness to Adversarial Inputs

� Slight input perturbations cause misclassification

� We can prove that these cannot occur (for given input
and amount of noise)

𝜖

Goodfellow et al., 2015

Outline

� Improving Core AR Engines

� The Many Uses of Proofs

� Improving Usability

The Need for Proofs
� If an AR engine returns a model/counter-example, it can

be checked

� But if it returns unsatisfiable, the result has to be trusted

� …unless the tool can produce an independently-
checkable proof

� There is already a standard for SAT solvers

What are Proofs good for?
� Reducing the trusted code base

� Improving code quality of AR engines

� Trusted interoperability with other tools

� Can be mined for additional information (e.g.
interpolants)

� Auditable trail for building assurance cases

What are Proofs good for?
� Reducing the trusted code base

� Improving code quality of AR engines

� Trusted interoperability with other tools

� Can be mined for additional information (e.g.
interpolants)

� Auditable trail for building assurance cases

Proof assistants vs SMT solvers

Expressiveness

Soundness Automation

5

Proof assistants vs SMT solvers

Expressiveness

Soundness Automation

5

Proof assistants vs SMT solvers

Expressiveness

Soundness Automation

5

Effects of SMTCoq

Expressiveness

+ SMTCoq

Soundness Automation

6

Effects of SMTCoq as a proof checker

Expressiveness

+ SMTCoq

Soundness Automation

7

SMTCoq as a stand-alone checker

Preprocessor

SMT solver

Proof
witness

SMT-LIB 2
parser

SMT-LIB2
problem

Certificate Formula

Coq checker

SMTCoq

Yes No 10

Legend:

SMTCoq as a stand-alone checker

Preprocessor

SMT solver

Proof
witness

SMT-LIB 2
parser

SMT-LIB2
problem

Legend:

Certified

Certificate Formula

Coq checker

SMTCoq

Yes No 10

SMTCoq as a stand-alone checker

Preprocessor

SMT solver

Proof
witness

SMT-LIB2
problem

Legend:

Certified

Trusted!

SMT-LIB 2
parser

Certificate Formula

Coq checker

SMTCoq

Yes No 10

SMTCoq as a stand-alone checker

Proof
witness

SMT-LIB2
problem

Legend:

Certified

Trusted!

SMT-LIB 2
parser

Untrusted

Preprocessor

SMT solver

Certificate Formula

Coq checker

SMTCoq

Yes No 10

SMTCoq from within Coq

SMTCoq

Proof
witness

Formula

Coq
goal

Certificate

Coq checker +Soundess

Preprocessor

SMT solver

Legend:

Certified

Trusted!

Untrusted

Coq

Reification

Theorem

Qed.

11

SMTCoq from within Coq

SMTCoq

Proof
witness

Certificate

Formula

Coq
goal

Coq checker +Soundess

Preprocessor

SMT solver

Legend:

Certified

Trusted!

Untrusted

Coq

Reification

Theorem

Qed.

No
x ≜1
f ≜λ a ⇒a+1

11

counter-example

Outline

� Improving Core AR Engines

� The Many Uses of Proofs

� Improving Usability

The Usability Challenge

� Experts can do great things with formal tools

� Need to find more ways for non-experts to benefit from
formal tools

� Develop Tools and Techniques that use formal under the
hood but expose a simple interface for users

The Usability Challenge

� Experts can do great things with formal tools

� Need to find more ways for non-experts to benefit from
formal tools

� Develop Tools and Techniques that use formal under the
hood but expose a simple interface for users
◦ Example: Symbolic QED for hardware verification

Quick Error Detection

QED
• Technique developed by Subhasish Mitra’s group
• Key idea

• Use regular and shadow values for registers and memory
• Apply duplicate and check transformation to improve tests

Quick Error Detection

42

QED
• Technique developed by Subhasish Mitra’s group
• Key idea

• Use regular and shadow values for registers and memory
• Apply duplicate and check transformation to improve tests

Example
Regular Shadow

Registers R0. . . R15 R16 . . . R31
Memory 0x10000 - 0x1FFFF 0x20000 - 0x2FFFF

Regular Shadow

Registers R0…R15 R16…R31

Memory 0x10000 – 0x1FFFF 0x20000 – 0x2FFFF

Quick Error Detection

CMP R1 == R17
CMP R2 == R18 42

QED
• Technique developed by Subhasish Mitra’s group
• Key idea

• Use regular and shadow values for registers and memory
• Apply duplicate and check transformation to improve tests

Example

LD R1, [0x10000]
LD R2, [0x10040]

→ LD R17, [0x20000]

. . .
LD R1, [0x10000]
LD R2, [0x10040]

. . . LD R18, [0x20040]

Regular Shadow

Registers R0…R15 R16…R31

Memory 0x10000 – 0x1FFFF 0x20000 – 0x2FFFF

Quick Error Detection

43

QED features
• Improves coverage and speed of bug detection with respect to

standard testing
• Reduces error latency (time between when bug is activated and

detected)

QED limitations
• Not exhaustive - might miss bugs
• Error latency can still be hundreds of instructions

Quick Error Detection

43

QED features
• Improves coverage and speed of bug detection with respect to

standard testing
• Reduces error latency (time between when bug is activated and

detected)

QED limitations
• Not exhaustive - might miss bugs
• Error latency can still be hundreds of instructions

SoC Verification

46Idea

• Combine QED with Bounded Model Checking

Symbolic QED

Result: Symbolic QED

• Collaboration with Subhasish Mitra’s group 13

• Idea: use BMC to search through all possible QED tests
• Initial state: QED-consistent (regular and shadow values match)
• Input must be sequence of regular instructions followed by

duplicate instructions
• Property: final state must be QED-consistent

Addresses limitations of QED
• Exhaustively covers all possible QED tests
• Finds minimum length QED test that triggers bug

47

Symbolic QED

Result: Symbolic QED

• Collaboration with Subhasish Mitra’s group 13

• Idea: use BMC to search through all possible QED tests
• Initial state: QED-consistent (regular and shadow values match)
• Input must be sequence of regular instructions followed by

duplicate instructions
• Property: final state must be QED-consistent

Addresses limitations of QED
• Exhaustively covers all possible QED tests
• Finds minimum length QED test that triggers bug

48

Conclusions

� Improvements in core AR engines have big payoffs
� Significant progress can be made by evolving engines

driven by new applications
◦ But need to build more talent and expertise in solver

development

� An ecosystem of interchangeable proofs would enable
high-trust interoperability

� Need to find creative ways to make formal power
accessible to non-experts

Backup: Proving and Satisfying

� A formula is a theorem iff its negation is not satisfiable:

⊨ Φ ⇔ ¬Φ is unsatisfiable

� Theorem proving and satisfiability checking are dual

Backup: Case Splitting

� Linear programs (LPs) are easy to solve

� Piecewise-linear constraints are reducible to LPs

� Case Splitting:
◦ Fix each ReLU to active or inactive state
◦ Solve the resulting LP
◦ If solution is found, we are done
◦ Otherwise, backtrack and try other option

� State explosion: 300 ReLUs → 2IPP checks

Backup: Soundness & Termination

� Soundness is straightforward

� Can we always find a solution using pivots and updates?

� No: sometimes get into a loop

� May have to split on ReLU variables
◦ Do so lazily
◦ In practice, about 10% of the ReLUs

