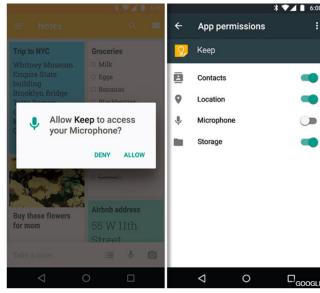
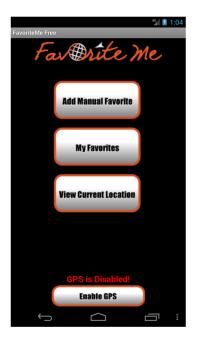


Automatic Identification of Sensitive UI Widgets based on Icon Classification for Android Apps


PI: Xusheng Xiao Case Western Reserve University

NSF Award #1755772 CRII: SaTC: Enhancing Mobile App Security by Detecting Icon-Behavior Contradiction

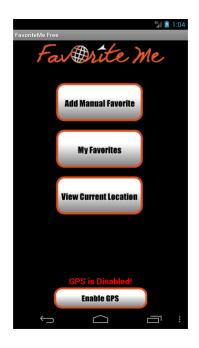
Privacy Issues of Mobile App



- Mobile apps have become an integral part of our life
 - E.g., business, transportation, education
- Many apps access sensitive data, raising privacy concerns
 - E.g., location, contacts, microphone

Sensitive UI Widgets

- It is crucial to understand the apps' intentions in using the sensitive information
 - E.g., Inspecting permissions and informing users about sensitive data
- Apps express their intentions to use or collect users' sensitive data via sensitive UI widgets, i.e., justifying the uses of the data
- App market needs an automatic approach to understand these intentions



Challenges: Understanding Intentions of UI Widgets

- UI widgets' intentions are expressed via texts and images
 - Prior works focus on analyzing framework APIs (e.g., device identifiers, and contacts) or descriptive texts (e.g., text labels), not images

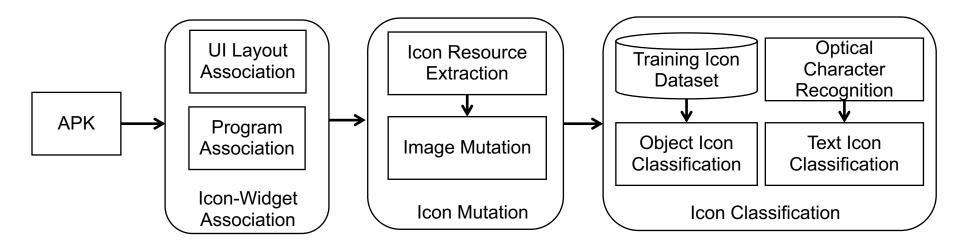
- Object icons: icons with specific shapes, no co-located texts
 - Different styles, scales, angles
- Text icons: icons embedded with texts
 - Diversified colors and opacities

Automatic Identification of Sensitive UI Widgets with Icons

Sensitive UI Widget Identification

 Given an app, which UI widgets are associated with icons?

 Based on the icons, which sensitive data the UI widgets will use?



IconIntent

- Synergistically combine program analysis and icon classification
- Associate icons with UI widgets via static analysis
- Classify the intentions of icons (both object icons and text icons) into eight pre-defined sensitive user input categories
 - Including Camera, Contacts, Email, Location,
 Phone, Photo, SMS, and Microphone

Overview of IconIntent

- Icon-Widget Association: static analysis on UI layout files and code
- Icon Mutation: image mutations on extracted icons
- Icon Classification: classification of icons into sensitive categories

Icon-Widget Association: UI Layout

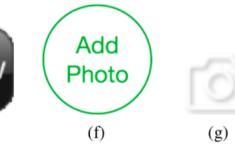
Static Analysis: XML parsing and resource resolution

UI layouts: widgets and icons

Icon-Widget Association: API Calls

 Life cycle methods: load layout files, bind variables to UI widgets, and associate icons to UI widgets

```
void onCreate(Bundle savedInstance) {
1   View g = this.findViewById(R.id.button_esc);  // FindView ImageView
2   h = (ImageView) g; // cast to ImageView
3   h.setImageResource(R.drawable.icon2); // associate icon
}
```


 Static analysis: dataflow analysis with overapproximations to associate UI widgets and icons

```
h.setImageResource(R.drawable.icon2); Widget ID set: \Gamma(h) = \{R.id.button\_esc\} \qquad Icon ID set: \Sigma(h) = \{R.drawable.icon2\},
```


App Icon Varieties



- Icons have different combinations of colors and transparencies in texts, backgrounds, and object shapes
- Challenges for computer vision techniques
 - Small: (a) and (b)
 - Low contrast: (c) and (d)
 - Bright color text and dark background: (e)
 - Opacity: (f) and (g)

Icon Mutation

- RGBA model <R,G,B,A> to represent an icon
 - R,G,B for red, green, blue, A for opacity
- Image mutations:
 - Image Scaling: enlarge pixel values using nearby pixels
 - Grayscale Conversion: convert an image to represent only the amount of light
 - Color Inversion: invert the colors of each pixel

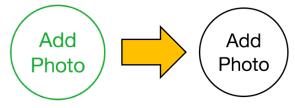
Contrast Adjustment: adjust the contrast of colors in the image

Opacity Conversion: convert the opacity differences to the color differences

Icon Classification – Object Icon

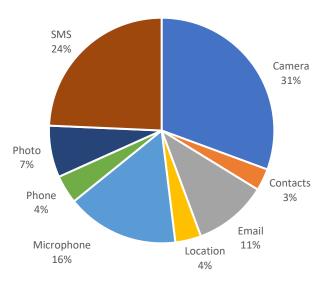
 Object recognition to classify object icons based on a training icon set labeled with sensitive user-input categories

- Scale-Invariant-Feature-Transform (SIFT)
 - Identifying key locations that are invariant with respect to image translation, scaling, and rotation and matching key locations
 - Challenges:
 - Too few key locations
 - Enlarging icons and FAST
 - Lower tolerance for changes
 - Relative One-to-One Mapping


Icon Classification – Text Icon

- Optical Character Recognition (OCR)
 - Working well for dark text and bright background

- Still not perfect even with image mutations
 - E.g., location -> Ication or Ilocation, email -> emai
- Classification based on Keyword Similarity
 - 95+% of 300 text icons extracted from top Google Play apps containing 1 to 3 words
 - Edit distance-based similarity (considering keyword length)


•
$$Sim_{w,k} = 1 - \frac{Edit\ Distance}{length(k)}$$

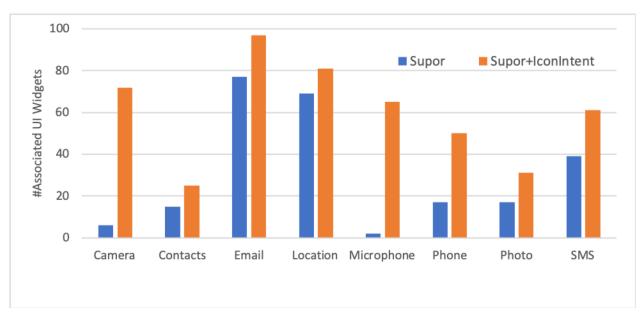
Evaluation Setup

- Implementation:
 - Static analysis: Gator and Soot
 - Icon classification: OpenCV and Asprise OCR

Subject:

- Training dataset: 1,576 icons
 - Google image search: 800
 - Top 10,000 apps: 776
- Test dataset: 150 apps with 5,791 icons
 - 539 sensitive object icons
 - 49 sensitive text icons
 - Total: 588 sensitive icons

Test Dataset


Identifying Sensitive UI Widgets

Category	#Detected SIs			#Apps with	#Detected	#Apps with
	Object	Text	All	SIs	SWs	SWs
Camera	148	1	149	47	65	35
Contacts	14	1	15	6	10	6
Email	44	5	49	16	25	12
Location	19	11	30	9	12	9
Microphone	75	3	78	26	65	19
Phone	20	1	21	6	38	4
Photo	41	12	53	13	19	13
SMS	125	11	136	23	24	10
All	486	44	530	135	248	97

- Detecting most sensitive icons (90.1%, 530 / 588) from most apps (135 out of 138 apps that contain sensitive icons)
- Prevalent sensitive UI widgets: 248 UI widgets from 97 apps (prec: 82.4%)
- Sensitive icons not always used in UI widgets
 - 125 SMS icons -> 24 UI widgets, 20 Phone icons -> 38 UI widgets

Combining with SUPOR

- SUPOR: text-based sensitive UI widget identification
 - Expand to include buttons, radio buttons, check boxes,
 - Leverage dex2jar to support custom widgets
- SUPOR: 242 SUI <-> SUPOR+IconIntent: 487 SUI
- Only 3 UI widgets are identified by both SUPOR and IconIntent

Icon Classification

Setting	P (%)	R(%)	F (%)
SIFT	43.0	54.5	48.1
Without Mutation	91.2	64.9	75.8
IconIntent	88.2	87.3	87.7

Setting	P (%)	R(%)	F (%)
Without Mutation	91.7	22.9	36.6
IconIntent	89.8	89.8	89.8

Object-Icon Classification

Text-Icon Classification

- IconIntent achieves an average F-score of 87.7% (with distance threshold as 0.3)
- IconIntent greatly improves F-score with image mutation (from 36.6% to 89.8%)

Conclusion

IconIntent

- Program analysis techniques to associate icons and UI widgets
- Computer vision techniques to classify the associated icons into eight sensitive categories
- Evaluation on 150 apps from Google Play
 - Detect 248 sensitive UI widgets in 97 apps, achieving a precision of 82.4%
 - SUPOR +IconIntent can detect 487 sensitive UI widgets (101.2% improvement over SUPOR only)
 - Image mutations improves icon classification

Thank You!

Questions?

