
PI: Xusheng Xiao
Case Western Reserve University

NSF Award #1755772
CRII: SaTC: Enhancing Mobile App Security by

Detecting Icon-Behavior Contradiction

Automatic Identification of Sensitive UI Widgets based
on Icon Classification for Android Apps

Privacy Issues of Mobile App

• Mobile apps have become an integral part of our life
– E.g., business, transportation, education

• Many apps access sensitive data, raising privacy concerns
– E.g., location, contacts, microphone

Sensitive UI Widgets

• It is crucial to understand the apps’ intentions in using the sensitive
information

– E.g., Inspecting permissions and informing users about sensitive data

• Apps express their intentions to use or collect users’ sensitive data via
sensitive UI widgets, i.e., justifying the uses of the data

• App market needs an automatic approach to understand these intentions

Challenges: Understanding Intentions of UI Widgets

• UI widgets’ intentions are expressed via texts and images
– Prior works focus on analyzing framework APIs (e.g., device identifiers,

and contacts) or descriptive texts (e.g., text labels), not images

• Object icons: icons with specific
shapes, no co-located texts

– Different styles, scales, angles

• Text icons: icons embedded with
texts

– Diversified colors and opacities

Automatic Identification of Sensitive UI Widgets with Icons

Sensitive UI Widget Identification

• Given an app, which UI widgets are associated
with icons?

• Based on the icons, which sensitive data the UI
widgets will use?

IconIntent

• Synergistically combine program analysis and
icon classification

• Associate icons with UI widgets via static
analysis

• Classify the intentions of icons (both object
icons and text icons) into eight pre-defined
sensitive user input categories
– Including Camera, Contacts, Email, Location,

Phone, Photo, SMS, and Microphone

Overview of IconIntent

• Icon-Widget Association: static analysis on UI layout files and
code

• Icon Mutation: image mutations on extracted icons
• Icon Classification: classification of icons into sensitive categories

APK

UI Layout
Association

Program
Association

Icon-Widget
Association Icon Classification

Object Icon
Classification

Training Icon
Dataset

Optical
Character

Recognition

Text Icon
Classification

Icon Mutation

Icon Resource
Extraction

Image Mutation

Icon-Widget Association: UI Layout

• Static Analysis: XML parsing and resource resolution

• UI layouts: widgets and icons

• Drawable objects

<LinearLayout android:orientation="horizontal">
<ImageView android:id="@+id/img” android:src="@drawable/loc" .../>
<EditText android:id="@+id/TxtCity" ... />
<Button android:text="@string/search" .../>

</LinearLayout>

UI Widgets Icon loc.png

<selector>
<item android:state_checked="true"

android:drawable="@drawable/btn_radio_to_on_mtrl_015" />
<item android:drawable="@drawable/btn_radio_to_on_mtrl_000" />

</selector>

Icon-Widget Association: API Calls

• Life cycle methods: load layout files, bind variables to
UI widgets, and associate icons to UI widgets

• Static analysis: dataflow analysis with over-
approximations to associate UI widgets and icons

void onCreate(Bundle savedInstance) {
1 View g = this.findViewById(R.id.button_esc); // FindView ImageView
2 h = (ImageView) g; // cast to ImageView
3 h.setImageResource(R.drawable.icon2); // associate icon

...
}

h.setImageResource(R.drawable.icon2);

Widget ID set: Γ(h) = {R.id.button_esc} Icon ID set: Σ(h) = {R.drawable.icon2},

App Icon Varieties

• Icons have different combinations of colors and
transparencies in texts, backgrounds, and object
shapes

• Challenges for computer vision techniques
– Small: (a) and (b)

– Low contrast: (c) and (d)

– Bright color text and dark background: (e)

– Opacity: (f) and (g)

Icon Mutation
• RGBA model <R,G,B,A> to represent an icon

– R,G,B for red, green, blue, A for opacity

• Image mutations:
– Image Scaling: enlarge pixel values using nearby pixels
– Grayscale Conversion: convert an image to represent only the amount of

light
– Color Inversion: invert the colors of each pixel

– Contrast Adjustment: adjust the contrast of colors in the image
– Opacity Conversion: convert the opacity differences to the color

differences

Icon Classification – Object Icon
• Object recognition to classify object icons based on a training

icon set labeled with sensitive user-input categories

• Scale-Invariant-Feature-Transform (SIFT)
– Identifying key locations that are invariant with respect to image

translation, scaling, and rotation and matching key locations
– Challenges:

• Too few key locations
– Enlarging icons and FAST

• Lower tolerance for changes
– Relative One-to-One Mapping

Ic_location.png Icon Dataset

Icon Classification – Text Icon
• Optical Character Recognition (OCR)

– Working well for dark text and bright background

– Still not perfect even with image mutations
• E.g., location -> lcation or llocation, email -> emai

• Classification based on Keyword Similarity
– 95+% of 300 text icons extracted from top Google Play apps

containing 1 to 3 words

– Edit distance-based similarity (considering keyword length)

• "#$%,' = 1 − +,-. /-0.1234
5426.7(')

Evaluation Setup
• Implementation:

– Static analysis: Gator and Soot
– Icon classification: OpenCV and Asprise OCR

• Subject:
– Training dataset: 1,576 icons

• Google image search: 800
• Top 10,000 apps: 776

– Test dataset: 150 apps with 5,791 icons
• 539 sensitive object icons
• 49 sensitive text icons
• Total: 588 sensitive icons

Camera
31%

Contacts
3%

Email
11%Location

4%

Microphone
16%

Phone
4%

Photo
7%

SMS
24%

Test Dataset

Identifying Sensitive UI Widgets

• Detecting most sensitive icons (90.1%, 530 / 588) from most apps (135 out of

138 apps that contain sensitive icons)

• Prevalent sensitive UI widgets: 248 UI widgets from 97 apps (prec: 82.4%)

• Sensitive icons not always used in UI widgets

– 125 SMS icons -> 24 UI widgets, 20 Phone icons -> 38 UI widgets

Category
#Detected SIs #Apps with

SIs
#Detected
SWs

#Apps with
SWs Object Text All

Camera 148 1 149 47 65 35

Contacts 14 1 15 6 10 6

Email 44 5 49 16 25 12

Location 19 11 30 9 12 9

Microphone 75 3 78 26 65 19

Phone 20 1 21 6 38 4

Photo 41 12 53 13 19 13

SMS 125 11 136 23 24 10

All 486 44 530 135 248 97

Combining with SUPOR

• SUPOR: text-based sensitive UI widget identification

– Expand to include buttons, radio buttons, check boxes,

– Leverage dex2jar to support custom widgets

• SUPOR: 242 SUI <-> SUPOR+IconIntent: 487 SUI

• Only 3 UI widgets are identified by both SUPOR and IconIntent

Icon Classification

• IconIntent achieves an average F-score of 87.7% (with
distance threshold as 0.3)

• IconIntent greatly improves F-score with image
mutation (from 36.6% to 89.8%)

Setting P (%) R(%) F (%)

SIFT 43.0 54.5 48.1

Without Mutation 91.2 64.9 75.8

IconIntent 88.2 87.3 87.7

Setting P (%) R(%) F (%)

Without Mutation 91.7 22.9 36.6

IconIntent 89.8 89.8 89.8

Object-Icon Classification Text-Icon Classification

Conclusion

• IconIntent

– Program analysis techniques to associate icons and UI

widgets

– Computer vision techniques to classify the associated icons

into eight sensitive categories

• Evaluation on 150 apps from Google Play

– Detect 248 sensitive UI widgets in 97 apps, achieving a

precision of 82.4%

– SUPOR +IconIntent can detect 487 sensitive UI widgets

(101.2% improvement over SUPOR only)

– Image mutations improves icon classification

Thank You !

Questions ?

