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Autonomous Underwater Vehicles (AUV)

» Mobile robot that operates
underwater

» Applications:

» Commercial: pipeline
inspection, renewable energy,
ports monitoring, off-shore
drilling, etc.

» Research: marine biology,
geology, hydrographic survey,
etc.

» Defense: mine countermeasures,
reconnaissance, search, etc.




What makes AUVs difficult?

» Need for complete autonomy

Communications is problematic underwater; remote control
only possible via tethers

Navigation is difficult — very few sensors, date is noisy

Highly uncertain environment: side currents, fishing nets,
obstacles

Mission has to be adjusted on-the-fly

Long term operations (endurance) is desired — energy
management is key

Failures in the system / environment must be anticipated



What is in a typical AUV?
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What is in a typical AUV?

» Dimensions: Standard Length: 60-85 in. Tube Diameter 5.8 in,Weight 59-85 Ib.

» Depth Rating: 100 meters

» Endurance: 8 to 14 hours at speed of 2.5 knots, configuration dependent

» Speed Range: | to 4 knots (0.5 to 2.0 m/s)

»  Communications: Wireless 802.1 In Ethernet standard (Iridium optional)

» Antenna Mast: Navigation Lights with IR and visible LEDs (programmable strobe)

» Navigation: Surface: GPS (WAAS corrected) Subsurface: RPl Doppler Velocity Log
(DVL), 81 m range, depth sensor and corrected compass

» Energy:800W hrs. of rechargeable Lithium-lon batteries (Swappable section)

» Onboard Electronics: Intel Dual-Core 1.6 GHz N2600 processor with MS Windows
embedded; Up to 512 GB solid-state drive for data storage

» Propulsion System: 48V Servo Controlled DC Motor with three-blade cast bronze
propeller

» Control: Four independent control planes (Pitch/Yaw Fins)

» Charging: 24V External Connector with USB 2.0 Support



AUV Hardware/Software Architecture
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» Osterloh, Christoph, Marek Litza, and Erik Maehle. "Hard-and Software Architecture
of a Small Autonomous Underwater Vehicle for Environmental Monitoring Tasks." In
Advances in Robotics Research, pp. 347-356. Springer, Berlin, Heidelberg, 2009.



Questions

» Safety: How do we know that the vehicle is safe to
operate!
The vehicle must not take an unsafe control action...
» Reliability: How do we know that the vehicle is reliable?
The vehicle must execute its mission...
... even if components or subsystems degrade or fail.

Central question of ‘Safe Al’:

‘Al-based systems’ are often created using machine learning
techniques — training based on data. Learning is never perfect
because the data set is never complete or perfect.

How do we design and prove that the Al-based system is
(1) safe and (2) remains operational — even if its ‘Al’ is imperfect?



Goal Structuring Notation (GSN)

» A graphical tool to represent a logical argument
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4+1 types of nodes:
Goal:What we want to prove
(‘safety claim’)

Assumption/Context: Under
what circumstances

Strategy: How we go about
proving the goal

Solution: Evidence to support a
goal

Sub-goals: decomposition of a
higher level goals


http://www.goalstructuringnotation.info/
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http://www.goalstructuringnotation.info/

GSN Example - Vocabulary

» Hazard: a potentially dangerous occurrence

» FHA: Functional Hazard Analysis — an engineering process “to
identify and classify the system functions and safety hazards,
environmental, and health-related consequences associated
with functional failure or malfunction”

» SIL: Safety Integrity Level — a relative level of risk-reduction
provided by a safety function, or to specify a target level of risk

reduction. SIL PFD
PFD: Probability of dangerous failure 1 01-001
oo . . P 0.01-0.001
» Formal verification: mathematical proof for o ooro 000,
software 4 | 0.0001-0.00001

» Fault-tree analysis — an engineering process to identify how
(low-level) faults could get combined and cause (system-level)
failures



How to build a GSN for system?

» Six-step process
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Typically, a collaborative process,
exercised by a group of safety
engineers

Source:


http://www.goalstructuringnotation.info/

How to ensure safety of an Al system?

» An old idea: Simplex Architecture
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Rivera. Jose, Danylyszyn.Alejandro, Weinstock. Charles, Sha. Lui, and Gagliardi. Michael, "An Architectural
Description of the Simplex Architecture," Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, Technical Report CMU/SEI-96-TR-006, 1996.



Simplex for AI/ML-based systems

» Doer/Checker
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https://users.ece.cmu.edu/~koopman/pubs/koopman18_waise_keynote_slides.pdf

The problems with Al in autonomy

» Perception is a very difficult component to verify

» Real-life testing does not scale — math does not add up.
» Simulation-based testing only for cases we thought of

» Edge cases are very hard to anticipate (but we must)

» Adversary examples for perception show how easy it is
to ‘fool’ it

» Autonomous systems (e.g. vehicles) must operate in a
heterogeneous environment (fishing boats, human drivers,
etc.)

Regulations can set the requirements but not the solutions.



To think about...




