Institute for Software ... UANDERBILT
Integrated Systems . UNIVERSITY

A Design Studio for
Modeling, Analyzing, and
Generating Systems with BIP

Anastasia Mavridou

October 24, 2017

Behavior-Interaction-Priority

|_PRIORITIES (schedulers) |
[INTERACTIONS (protocols)
B/ [E|[H|[Al[v][1][0]|R

BIP allows to compositionally

e develop correct-by-construction applications

e analyze existing applications

Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad Jaber, Thanh-Hung
Nguyen, and Joseph Sifakis. "Rigorous component-based system design using the BIP

framework." IEEE software 28, no. 3 (2011): 41-48.
2

BIP Application Examples

Development of correct-by-construction satellite software
» 49 safety properties enforced by construction

» compositional verification of deadlock-freedom with D-Finder:
- State space size: > 310 x 4
- Verification time: < 2 minutes

Development of the Dala robot controller
» > 250,000 lines of code

» example results of deadlock-freedom analysis with D- Fmder

Estimated state Verification
Module BIP LoC C/C++ LoC space size time (minutes)

LaserRF 5,343 51,653 220 x 329 % 34
Rflex 8,244 57,442 234 x 3% x 1045 9:39
Antenna 1,645 16,501 212 x 3% x 13 0:14

BIP-by-example

Safety property: T 1T T {b1, b2, f1, f2,b1b2,
Mutual exclusion bf bf b1 fo, f1b2, f1f2}

No restrictions

BIP-by-example

Safety property:
Mutual exclusion

No constraints

BIP-by-example

{bl = 7(27b2 < fl}

Safety property:
Mutual exclusion

No constraints Interaction Constraints Priority Constraints

ENngine-based Execution

1. Components notify the BIlE[[H][A]]|V 0llu

| e il Hi il Hi il GH il Gi& HG

G G

2. The BIP-engine picks an
interaction and instructs
the components

initial to WRITE_BUFFER do{ 1}

on
on
on
on
on
on

end

write from WRITE_BUFFER to WAIT

wait from WAIT to STATUS_WRITE

contin from STATUS_WRITE to WRITE_BUFFER
fail from STATUS_WRITE to WRITE_BUFFER
ok_write from STATUS_WRITE to DONE
finish from DONE to WRITE_BUFFER

atomic type memory_library

export port syncPort setWrite
export port syncPort checkCRC
export port syncPort setRead

place S©

initial to SO do{ }

on
on
on
end

setWrite from SO to SO
setRead from SO to SO
checkCRC from S@ to SO

compound type CubETH

component sMutex MEM_MUX

component flash_memory_readActionFlowWithAbort MEMRD_ACTFLAB
component flash_memory_writeActionFlowWithAbort MEMWR_ACTFLAB
component memory_Llibrary MEMLIB

component flash_memory_readModeManager MEMRD_MODMNG

component flash_memory_writeModeManager MEMWR_MODMNG

BIP Code Example

connector RDV3 flash_memory_setRead2 (MEM_MUX.take ,MEMLIB.setRead ,MEMRD_MODMNG. read)
connector RDV2 flash_memory_setReadl (MEM_MUX.take ,MEMLIB.setRead)
connector RDV2 flash_memory_read (MEMRD_MODMNG.contin ,MEMRD_ACTFLAB. read)

connector RDV3 flash_memory_read_fail2 (MEMRD_ACTFLAB.fail ,MEM_MUX.release ,MEMRD_MODMNG.done)
connector RDV2 flash_memory_read_faill (MEMRD_ACTFLAB.fail ,MEM_MUX.release)

connector RDV3 flash_memory_ok_read2 (MEMRD_ACTFLAB.ok_read ,MEM_MUX.release ,MEMRD_MODMNG.done)
connector RDV2 flash_memory_ok_readl (MEMRD_ACTFLAB.ok_read ,MEM_MUX.release)

connector RDV2 flash_memory_checkCRC { MEMRD_ACTFLAB.check_CRC ,MEMLIB.checkCRC)

connector SINGLE flash_memory_bad_CRC (MEMRD_ACTFLAB.bad_CRC

connector RDV2 flash_memory_write (MEMWR_MODMNG.contin ,MEMWR_ACTFLAB.write)

connector RDV3 flash_memory_setWrite2 (MEM_MUX.take ,MEMLIB.setWrite ,MEMWR_MODMNG.write)
connector RDV2 flash_memory_setWritel (MEM_MUX.take ,MEMLIB.setWrite
connector RDV3 flash_memory_write_fail2 (MEMWR_ACTFLAB.fail ,MEM_MUX.release ,MEMWR_MODMNG.done)
connector RDV2 flash_memory_write_faill (MEMWR_ACTFLAB.fail ,MEM_MUX.release)

connector RDV3 flash_memory_ok_write2 (MEMWR_ACTFLAB.ok_write ,MEM_MUX.release ,MEMWR_MODMNG.done)
connector RDV2 flash_memory_ok_writel (MEMWR_ACTFLAB.ok_write ,MEM_MUX.release)

connector SINGLE MEMRD_ACTFLAB_finish (MEMRD_ACTFLAB.finish
connector SINGLE MEMWR_ACTFLAB_wait (MEMWR_ACTFLAB.wait)
connector SINGLE MEMWR_ACTFLAB_contin (MEMWR_ACTFLAB.contin
connector SINGLE MEMWR_ACTFLAB_finish (MEMWR_ACTFLAB.finish

priority flash_memory_setReadl_after_flash_memory_setRead2
priority flash_memory_read_faill_after_flash_memory_read_fail2
priority flash_memory_ok_readl_after_flash_memory_ok_read2
priority flash_memory_setWritel_after_flash_memory_setWrite2

)

)
)

priorityvy flash memorv write faill after flash memorv write fail2

)

flash_memory_setReadl < flash_memory_setRead2
flash_memory_read_faill < flash_memory_read_fail2
flash_memory_ok_readl < flash_memory_ok_read2
flash_memory_setWritel < flash_memory_setWrite2

flash memorv write faill < flash memorv write fail2

Design Studio: Graphical Language

Graphical connectors to represent component interaction

{tiCk‘l tiCthiCkg}
§ '

{p, pq, pr, pqr}
e (Connectors are tree-like structures

e connector ends of two types
» Triggers (triangles) — nodes that do not require interaction

* Synchrons (bullets) — nodes that require interaction with others

9

Design Studio: Parameterized Models

Systems are built from multiple instances of the same type
e Component types

e Define interactions between component types

n1 n2

-l--l n mp:dp mgq:dq n -|-2

cardinality: number of instances of each
component type

10

Design Studio: Parameterized Models

Degree: number of connector instances attached to

each port instance
E =

mgq:2

alele
G

11

Design Studio: Parameterized Models

Multiplicity: number of port instances of the same type
that participate in a connector instance

12

BIP Design Studio

I\/Ietamodel

I\/Iodel
epOS|tor|

Consistency,
Conformance
Checking

_/

Model/Code
Editors,
Visualizations

Model
Transformation,

_ J

Code
Generation

./

13

BlIP-engine

Route Monitor
finished

Hands-on BIP

Modeling Camel Routes

14

Conclusion

* The BIP design studio

» web-based, version-controlled, collaborative

» Open source: github.com/anmavrid/webgme-bip
» allows coping with modeling complexity and size
» formal semantics

» INncludes:

dedicated editors for code, interaction and behavior editing
code generation plugins

consistency, conformance checking mechanisms
integration of the BIP-engine and visualization of its output

15

https://github.com/anmavrid/webgme-bip

Related Bibliography

e Mavridou, Anastasia, Joseph Sifakis, and Janos Sztipanovits. “A WebGME design
studio for architecture-based design with BIP.” 17th High Conference Software and
Systems Conference (HCSS), Annapolis, MD (2017).

e Mavridou, Anastasia, Joseph Sifakis, and Janos Sztipanovits. “Architecture-based
design and analysis with BIP.” Safe and Secure Systems and Software Symposium
(S5). Dayton, OH (2017).

e Basu, Ananda, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad
Jaber, Thanh-Hung Nguyen, and Joseph Sifakis. "Rigorous component-based
system design using the BIP framework." IEEE software 28, no. 3 (2011): 41-48.

e Bliudze, Simon, Anastasia Mavridou, Radoslaw Szymanek, and Alina Zolotukhina.
"Exogenous coordination of concurrent software components with JavaBIP.”
Software: Practice and Experience (2017).

e Mavridou, Anastasia, Eduard Baranov, Simon Bliudze, and Joseph Sifakis.
"Architecture diagrams: A graphical language for architecture style specification.”
9th Interaction and Concurrency (2016).

16

