

Case study: belief-triggered altitude control

Pilot reads altimeter, which provides noisy information. Beliefs, newly learned by the pilot, trigger descent or climb actions.

$$T > 0 \land alt > 0 \land \varepsilon > 0 \rightarrow [($$
obs ______ L(?alt_p - alt < \varepsilon);
btctrl ______ ?B(alt_p - T - \varepsilon > 0); yv := -1 U ?P(alt_p - T - \varepsilon < 0); yv := 1
phys _____ t := 0; t' = 1, alt' = yv & t < T
)*] alt > 0
verified

Observation states that perceived and real altitude cannot differ by much.

Descent is triggered by the Belief that distance travelled and worst-case noise keep the airplane above ground. The mere Possibility of danger triggers a climb.

The plane moves in real time according to simplified **physics**.

$x \coloneqq *$	Assign any $\mathbb R$ to x non-deterministically
$\alpha \cup \beta$	Run α or β non-deterministically
?φ;α	If condition ϕ is met, then run $lpha$

Belief: subtler than expected

Learning that F must be true now is the same as believing that F must be true *a priori*.

Progress: case study

Theorem: the calculus for belief-aware CPS sound.

The calculus enables the verification of CPS case studies.

- New paradigm, new model with explicit observation.
- Belief -> pilot decisions -> plane behavior -> learning -> belief. Everything is interleaved.

• Modular safety proofs: belief-only sections, real-world-only

sections, little "glue" between the two.

• "Meta-properties" constraining what is believed and what

is true become critical to the safety argument.