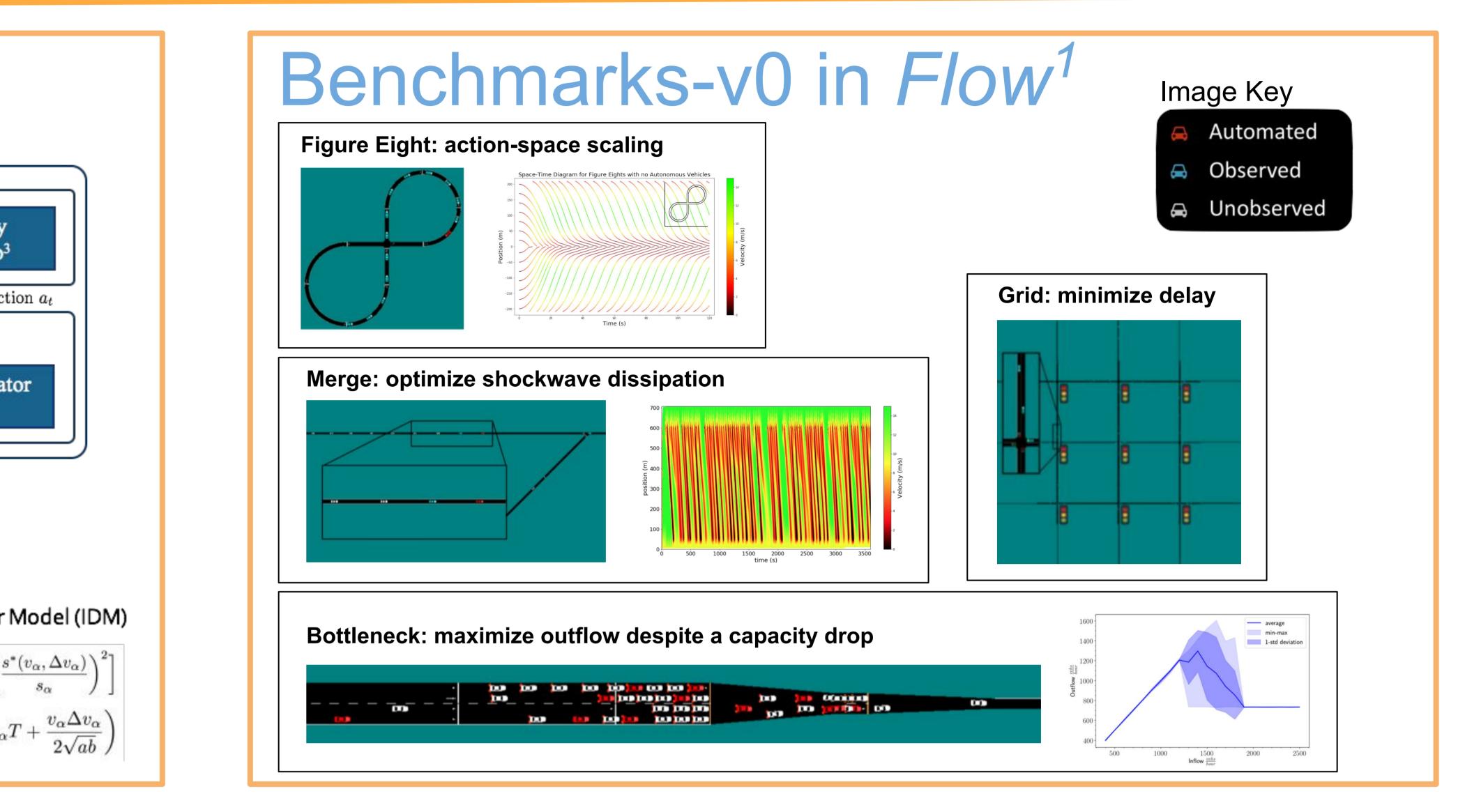

Benchmarks for Reinforcement Learning in Mixed Autonomy Traffic Eugene Vinitsky^{1*}, Aboudy Kreidieh^{2*}, Luc Le Flem³, Nishant Kheterpal³, Kathy Jang³, Cathy Wu³, Fangyu Wu³, Richard Liaw³, Eric Liang³, Alexandre Bayen^{2,3,4} | UC Berkeley

Motivation

- 2019: Every car company rolls out **Automated Cruise** Control
- Steady appearance of mixed autonomy-traffic
- Opportunity to improve the roadways
- Mujoco/Atari benchmarks have hugely advanced RL research
- No existing benchmarks in mixed-autonomy traffic!
- Time wasted rebuilding traffic scenarios
- Impossible to compare control strategies

Results



*indicates equal authorship, evinitsky@berkeley.edu; 1. Mechanical Engineering; 3. Electrical Engineer

an re"		Problem Flow1: Computational framework Task designer Markov Decision Process Traffic network Traffic dynamics Vehicle types Noise models Inflows Routes	Agent RL Library RL Library Rllib ² /rllab ³ state s_t reward r_t act Environment Custom dynamics Traffic simular SUMO
		$\mathbf{S}_{t+1} \\ \mathbf{S}_{t+1} \\ S$	$\begin{aligned} \textbf{Control Structure} \\ \textbf{Autonomous vehicles:} \\ a_t &= \pi_\theta(s_t) \\ \textbf{Humans: Intelligent Driver} \\ \hline a_{\text{IDM}} &= \frac{dv_\alpha}{dt} = a \Big[1 - \Big(\frac{v_\alpha}{v_0} \Big)^\delta - \Big(\frac{s}{v_0} \Big)^\delta \Big] \\ s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) &= s_0 + \max \Big(0, v_\alpha) \\ \hline s^*(v_\alpha, \Delta v_\alpha) \\ \hline$

Average and standard deviation over 40 rollout. Top scores in **bold**, human baseline in *italics*. Green/red indicates higher scores are better/worse.

Benchmark—	ARS	ES	TRPO	PPO	Human	Details	Metric
Figure Eight 0	7.3 ± .5	6.9 ± .1	8.2 ± .1	N/A	4.2 ± .1	1 AV, 13 Humans	Avg. Speed (m/s)
Figure Eight 1	6.4 ± .1	N/A	5.6 ± .6	N/A	4.2 ± .1	7 AVs, 7 Humans	Avg. Speed (m/s)
Figure Eight 2	5.7 ± .1	6.0 ± .1	5.0 ± .2	N/a	4.2 ± .1	14 AVs	Avg. Speed (m/s)
Merge 0	11.3 ± .3	13.3 ± .5	15.0 ± .1	13.7 ± .4	7.4 ± .6	10% AVs	Avg. Speed (m/s)
Merge 1	11.1 ± 3	17.3 ± .4	13.7 ± .2	14.6 ± .5	7.4 ± .6	25% AVs	Avg. Speed (m/s)
Merge 2	11.5 ± .5	17.3 ± .5	14.1 ± .2	14.5 ± .3	7.4 ± .6	33% AVs	Avg. Speed (m/s)
Grid 0	270 ± 1	271 ± 1	296 ± 3	296 ± 5	280 ± 2	3x3 Grid	Avg. Delay (s)
Grid 1	275 ± 1	274 ± 1	296 ± 2	296 ± 2	276 ± 2	5x5 Grid	Avg. Delay (s)
Bottleneck 0	1265 ± 263	1360 ± 200	1298 ± 268	1167 ± 264	1023 ± 263	10% AVs, 4x2x1 lanes, No lane changing	Outflow (vehs/hr)
Bottleneck 1	1350 ± 162	1378 ± 192	1375 ± 61	1258 ± 200	1135 ± 319	10% AVs, 4x2x1 lanes, lane changing enabled	Outflow (veh/hr)
Bottleneck 2	2284 ± 231	2324 ± 264	2131 ± 190	2143 ± 208	1889 ± 252	10% AVs, 8x4x2 lanes, no lane changing	Outflow (veh/hr)

Conclusions/Future Work

- Using deep reinforcement learning, we can train autonomous vehicles to improve traffic • We open source four new benchmarks in mixed autonomy traffic • Three benchmarks correspond to common traffic situations • AVs improve traffic metrics up to 100% in some benchmarks Increasing the fraction of AVs does not necessarily improve outcomes

- Future work: Benchmarks-v1
 - Generalization: Can we find one AV controller for many scenarios? **Decentralization:** how well can we do with multi-agent RL? **Scaling:** Can AVs optimize traffic at the city scale? Human comfort: Optimize w/ regard for passenger satisfaction
 - **Fairness:** Can RL find the social optimum without unfair penalties?
- For more info:
 - Website: https://flow-project.github.io
 - Github repo: <u>https://github.com/flow-project/flow</u>
 - RL Library: https://github.com/ray-project/ray • Lab twitter: https://twitter.com/BerkeleyMsl
- **References:**
- Wu, Cathy, et al. "Flow: Architecture and benchmarking for reinforcement learning in traffic control." arXiv preprint arXiv:1710.05465 (2017).
- (2017).
- Learning. 2016.

2. Liang, Eric, et al. "Ray RLLib: A Composable and Scalable Reinforcement Learning Library." *arXiv preprint arXiv:1712.09381*

3. Duan, Yan, et al. "Benchmarking deep reinforcement learning for continuous control." *International Conference on Machine*