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Beyond	Stability:	Performance,	Efficiency	and	Disturbance	
Management	for	Smart	Infrastructure	Systems	

Scien8fic	Impact:		
•  Use	of	a	common	modeling	

framework	and	then	
adap5ng	to	each	applica5on	
is	generalizable	`by	design’	

•  Delay	management	and	
interplay	between	
engineered	and	economic	
control	needed	across	CPS	
systems	

Solu8on:		
•  Characterizing	weakest	links	 							

in	transporta5on	networks				
(where	disturbances	likely	lead						
to	collisions)	

•  Disturbance	localiza5on	in	
transporta5on	networks	

•  Op5mizing	efficiency	in	microgrids	
•  New	algorithms	for	computer	clock	

synchroniza5on		
•  Mul5-5me	scale	architecture	for	

power	system	op5miza5on	

Challenge:		
•  Theory,	algorithms	and	tools	to	

evaluate	and	improve	
efficiency,	performance,	and	
disturbance	management	in	
next	genera5on	infrastructure	
networks	

•  Apply	results	to	transporta5on,	
communica5on	and	power	
system	infrastructure	networks			 Broader	Impact:		

•  Focus	on	efficiency	and	
performance	is	directly	
5ed	to	sustainability	goals	

•  K-12	outreach:	JHU	STEM	
summer	school;	Women	
Serious	about	Science	

•  Rigor	&	Relevance	blog	
•  SWE	and	SHPE	mentorship	

CPS	Awards	1544771,	1544724,1544761,1545096	
Dennice	Gayme	&	Enrique	Mallada	(Johns	Hopkins),	Vijay	Gupta	(Notre	
Dame),		Ao	Tang	(Cornell),	Steven	Low	&	Adam	Wierman	(Caltech)	

	

A	coupled	oscillator	serves	as	the	base	
mathema8cal	abstrac8on	for	power,	
transporta8on	&	communica8on	networks	



Project Overview 

Applications: Transportation Networks, Communication Networks and Power Grids 

Exploit a common modeling framework to develop new techniques to characterize & 

control cyber-physical infrastructure networks to not only ensure stability but to also  

1. Optimize efficiency and performance. 

2. Integrate engineering and economic control mechanisms. 
 

 



Broader Impacts 

§ Future infrastructure networks will have unprecedented complexity  
– Performance criteria  such as efficiency are hard to characterize and generally 

secondary control goals but have big societal impacts (e.g. emissions, traffic 
congestion) 

– New technologies and greater interest in ‘human centered systems’ makes design 
of appropriate interaction of engineered and economic controls a growing 
challenge for efficient, reliable infrastructure networks 

Mentoring examples 

§ Faculty mentorship for local student chapters 
– Society of Women Engineers (SWE) 
– Society of Hispanic Professional Engineers (SHPE) 
– Institute of Electrical and Electronics Engineers (IEEE) 

§ Caltech SURF program summer student mentoring  



Broader Impacts: Outreach 
Local 
§  Women Serious about Science 

–  Baltimore Polytechnic Institute  

§  Engineering Innovation 
–  A JHU summer course for high 

school students 

§  First Lego league Faculty mentor 
–  LaSalle Intermediate Academy 

International 
§  Rigor & Relevance blog 
§  State Department program     

–  Women’s Innovations in Science and 
Entrepreneurship (Near East and North 
African delegation)  

§  IEEE HONET-ICT Int'l Symposium '16 



Research Themes 

1. Characterizing performance  

2. Optimizing performance & robust disturbance management 

3. Exploiting interconnection topology & mitigating the 
impact of communication or control delays 

4. The interplay between engineered and economic controls 

Developing mathematical foundations, theory and algorithms for 

coupled oscillator systems as a model for smart infrastructures  



Sample Results: Transportation Networks 

§ Performance characterization and control for optimizing performance 

§ A new robustness measure 
– Norm based characterization of  the vehicle most likely to cause a collision 

and the maximum permissible disturbance                               
to prevent collisions 

§ Isolating shockwaves in traffic (disturbance localization) 
– Distributed control strategies for localization of shock waves (stop-and-go 

waves) as well as elimination of the waves within a guaranteed period of 
time.  

See poster12 B-R in Studio D 



Sample Results: Communication Networks 

§ Clock Synchronization:  Comparing with NTP, our solution achieves µs 
level accuracy without additional hardware, at least 10X 
improvement 

§   Fastest flow reconfiguration without transient congestion 

See poster 13 F-L  in Studio D 



Sample Results: Power Systems 

See poster 13 F-R  in Studio D 

Multi-Timescale Markets for Co-Optimizing  

Frequency Regulation and Economic Dispatch  

§ Enrique Mallada (Johns Hopkins), Steven Low (Caltech),  

§ Adam Wierman (Caltech), Janusz Bialek (Skoltech), Desmond Cai (A-Star), 
Changhong Zhao (NREL) 



time 
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Supply-demand Balance: Multi Timescale Approach 
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primary 
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SC-OPF: Chance constrained; N-1 secure  
 



Existing Architecture 

sec min 5 min 60 min 

primary 
frequency control 

secondary frequency 
control 

economic dispatch  
+ 

congestion management  

SC-OPF 

Market->Efficiency Control->Stability 

Challenge: High Volatility 

Daily wind generation [Tehachapi, CA]  5-hour solar generation [Columbia Univ.]   

fuel efficiency 
emission 

conservative 
optimal 



1) Unified Optimal Freq. Control 

§  Generator + load control 
§  Fully distributed 

§  Stability + efficiency 

§  Congestion management 

2) Joint Ec. Dispatch and Freq. Reg. 

§  Co-optimized multiple time-
scales 
§  Increased efficiency 
§  Market-based Implementation 

cleaner & faster  

with participation of  

smart buildings,  
EVs, storage,… 
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Unified Controller Design 
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Simulation setup: IEEE 39-bus system 

Exogenous input:  ΔPi
net = −0.5 p.u.
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Simulation setup: IEEE 39-bus system 

Exogenous input:  ΔPi
net = −0.5 p.u.
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1) Unified Optimal Freq. Control 

§  Generator + load control 
§  Fully distributed 

§  Stability + efficiency 

§  Congestion management 

2) Joint Ec. Dispatch and Freq. Reg. 

§  Co-optimized multiple time-
scales 
§  Increased efficiency 
§  Market-based Implementation 

cleaner & faster  

with participation of  

smart buildings,  
EVs, storage,… 
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Multi-timescale Decomposition 

System Problem 

Freq. Regulation (fast) 

efficiency + stability 

FR(pb,pp,ds)

Economic Dispatch (slow) 
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Multi-timescale Market Design 
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Multi-timescale Market Design 
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Multi-timescale Market Design 
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Thank you 

Ted Grunberg 

Desmond Cai  

H. Giray Oral 

Changhong Zhao  

S. Seetharaman Emma Tegling 

Shih-hao Tseng  

Donya Ghavidel 


