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1 Overview

A dynamically adaptive system (DAS) must monitor itself and its execution environment to detect
conditions warranting a reconfiguration. At run time, a DAS analyzes this monitoring information
to determine when and how to safely reconfigure itself such that it continuously satisfies functional
and non-functional requirements. Unfortunately, unanticipated environmental conditions may neg-
atively impact the accuracy and reliability of monitoring information, and thus compromise the
decision-making capabilities of a DAS. For example, unexpected sensory inputs, such as those pro-
duced by sensor noise or failure, may alter a DAS’s self-assessment of requirements satisfaction.
Moreover, it is impossible for a human to know and/or enumerate all possible combinations of
system and environmental conditions that a DAS may encounter [1]. As a result, it is important to
explore how system and environmental conditions impact the behavior of a DAS, preferably during
the early stages of requirements engineering where there is greater flexibility for resolving obstacles
that prevent the satisfaction of specific goals.

Over the past ten years, the authors have developed a number of techniques to address multiple
dimensions of the challenges relating to the development of DAS that must operate safely even
in the face of environmental uncertainty. Given the complexity and the large number of possible
solutions, we have explored three key directions of research. First, we have developed a number of
different techniques [2, 3, 4] to support the assurance of DASs that are designed to ensure that safe,
acceptable behavior is delivered before, during, and after adaptation. Second we have developed
a new requirements-specification language, RELAX, intended to explicitly address the need to
support dynamic adaptation to handle functional and non-functional tradeoffs while responding
to environmental conditions [1, 5]. Finally, we have developed a number of techniques to support
run-time adaptation/reconfiguration with inspiration from biology that has clearly demonstrated
robustness, self-healing, and adaptability in response to unexpected and adverse environmental
conditions. Due to space constraints, we only describe work in the bio-inspired area as we believe
that that is one of the most promising directions for tackling the challenges posed by DAS, and we
have also been able to incorporate the results from the other two lines of research.
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2 Bio-Inspired Techniques.

We have developed a number of techniques that harness evolutionary computation to address the
challenges with developing a DAS that is able to support run-time monitoring and adaptation
to handle environmental uncertainty. Our techniques include those that support adaptive run-
time monitoring of system requirements, run-time generation of reconfigurations at the system
architectural level, run-time generation of adaptive logic between configurations, and automatic
generation of suites of design models for different configurations that satisfy safety and functional
requirements [6, 7, 8], where each configuration makes different non-functional tradeoffs, such as
performance, energy consumption, and security.

Adaptive Monitoring. Self-reconfiguration enables a dynamically adaptive system (DAS) to
continuously satisfy its requirements even as system and environmental conditions change [9]. To
verify that a DAS satisfies its requirements at run time, it must monitor itself and its execution
environment by continuously probing components and sensors to obtain data. This monitoring
data can then be analyzed to determine if a requirement has been violated or to detect conditions
conducive to a requirement violation. Monitoring, however, is often computationally expensive,
intrusive, and difficult to design. In addition, continuous monitoring involves tradeoffs between
monitoring costs and accuracy, or the coverage and coherence of gathered data. For example,
excessive monitoring may improve monitoring accuracy, yet it may also interfere with and alter the
behavior of a DAS in unpredictable ways. Similarly, insufficient monitoring may conserve system
resources, yet it may also fail to detect events leading to a requirement violation. As such, it is
desirable to adapt the monitoring behavior of a DAS at run time in response to changing system
and environmental conditions. Plato-RE [10] is an evolutionary computation-based approach that
combines the concepts of requirements monitoring and adaptive sampling to enable a DAS to detect
possible requirements violations while minimizing monitoring costs.

Run-time Generation of Reconfigurations. Plato-MDE [11, 12, 13] is an evolutionary
computation-based approach for generating target system models at run-time in response to chang-
ing requirements and environmental conditions. Each target system model represents a potential
system configuration that may be reached through a sequence of reconfiguration steps. Plato-MDE
evaluates each generated target system model to determine its suitability given current system con-
ditions. In addition, Plato-MDE leverages current system models to constrain the degree of change
in the generated target models. As a result, Plato-MDE enables an adaptive system to implicitly
control the complexity and novelty of the reconfiguration itself at run time. Moreover, rather than
prescribing explicit reconfiguration plans at design time in anticipation of possible reconfiguration
scenarios, developers need only specify the relative importance of each functional and non-functional
concern to apply Plato-MDE.

Run-time Generation of Safe Adaptation Paths. An adaptation path comprises a series
of reconfiguration steps. To prevent loss of state or introduction of erroneous results during a re-
configuration, a safe adaptation path preserves dependency relationships and ensures component
communications are not interrupted [14, 15, 2]. Although multiple safe adaptation paths may
exist for a given situation, the identification and selection process is non-trivial, as different solu-
tions may represent tradeoffs between reconfiguration costs, performance, and reliability. Hermes
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is an evolutionary computation-based approach for automatically generating adaptation paths that
safely transition an executing system from its current configuration to its desired target configura-
tion. Hermes harnesses the process of evolution to efficiently explore parts of a vast solution space
comprising all possible adaptation paths. Moreover, instead of focusing on a single criterion when
generating adaptation paths, Hermes evolves solutions that balance competing objectives between
functional and non-functional requirements, such as minimizing reconfiguration costs while maxi-
mizing reconfiguration performance and reliability. Additionally, Hermes can be applied at design
time to generate alternative adaptation paths, and at run time to generate safe adaptation paths
that handle changing system and environmental conditions.

Strategies for Mitigating Negative Impacts of Environmental Uncertainty. Early
system requirements and domain assumptions are often ambiguous and idealized, thus leading
to inconsistencies between a system specification and its behavior at run time [16, 17]. To aug-
ment goal-oriented models with more comprehensive and realistic requirements, van Lamsweerde
and Letier proposed systematic techniques, heuristics, and formal techniques for reasoning about
obstacles nd partial goal satisfaction. However, as DASs increase in complexity and become inter-
twined with the physical elements, including the environment, it becomes increasingly impractical
for a human to exhaustively explore the system and environmental conditions that may adversely
impact a DAS [1, 5].

We have developed Loki, 1, an automated technique for identifying combinations of system
and environmental conditions that obstruct design goals. Loki can be leveraged to generate
suites of test cases as well as suggest refinements to a goal model. Loki, a domain-independent
evolutionary computation-based approach, is designed to explore how uncertainty may obstruct
goals in a DAS, where uncertainty refers to the unknown effects of system and environmental
conditions upon goal satisfaction. Instead of searching for specific instances of goal obstructions,
however, Loki generates a diverse set of behaviors in a DAS that may lead to goal obstructions.
To achieve this objective, Loki leverages the concept of novelty search [18] to generalize, or
collapse, vast collections of possible behaviors into fewer subsets of different behaviors in response
to system and environmental conditions. Searching for novelty enables Loki to discover both
latent behaviors and requirements violations. While a requirements violation clearly obstructs a
specific set of system goals, latent behaviors manage to satisfy requirements through unexpected
and potentially undesirable behaviors. Furthermore, those unwanted behaviors may mean that
requirements need to be modified to explicitly disallow the unwanted behavior. In addition, the set
of system and environmental conditions that cause such behaviors can be reused to guide the testing
process of implemented systems We have applied Loki to an autonomous intelligent vehicle system
(IVS) that performs adaptive cruise control and lane keeping while avoiding collisions. To this end,
we leverage a set of IVS goal-oriented requirements models to implement an IVS prototype in the
Webots simulation platform [19]. Experimental results show Loki is able to discover combinations
of system and environmental conditions that lead to latent behaviors and requirements violations.
Furthermore, the set of behaviors discovered by Loki may be analyzed to identify elements in
the goal model that may require new or augmented obstacle mitigations, as well as additional
constraints to disallow undesirable latent behaviors.

1In Norse mythology, Loki is the god of mischief and trickery.
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