
NRI: FND: Bioinspired Design and 
Shared Autonomy for Underwater 

Robots with Soft Limbs
Award Number 1734627

PI: Dr. Yigit Menguc
Co-PI: Dr. Geoff Hollinger

Co-Presenter: Gina Olson (PhD Candidate)

mLab Robotics



Philosophy: 
Technology Within a Spectrum of Softness
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Outline
• Soft Simulation and Planning
• Learning Load States
• Generalizable Mechanical Models (Gina Olson)



Currently, delicate and challenging underwater manipulation tasks are performed only by human divers when 
it is safe for them to enter the environment. Robots can help address this issue by distancing human operators 
from dangerous environments, while still leveraging their skills in planning complex manipulation tasks. Rigid 
robotic manipulators, however, are typically not suitable for delicate manipulation tasks. To address this 
limitation, this project explores the design and control of soft robotic arms inspired by the octopus.

The objective of this research is to establish a framework for underwater manipulation, combining shared 
autonomy between human operators and robots with mechanically-directed soft actuation and sensing. The 
proposed work will examine new actuator morphologies, alternative fabrications techniques, and the use of 
stretchable integrated liquid metal sensors. To control the soft grippers, this project develops a planning and 
control interface that utilizes machine learning techniques to leverage human operators' skills at quickly 
identifying stable grasps. The physical attributes of the soft grippers will be designed in tandem with 
algorithms, which will provide improved understanding of underwater interaction and shared autonomy. 
Dexterity and compliance of the soft manipulators will be evaluated for large contact-area, multi-point 
gripping, which is particularly advantageous for grasping delicate objects underwater. Testing will be done in a 
benchtop underwater test bed, using kinematic motion capture and interaction forces to evaluate 
performance.



What we want to simulate

• Pairs of pneumatic actuators

• Inflation causes contraction

• Planar arrangement
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Why an In-House Simulator?

• Simulators such as Gazebo assume robots are defined by links and joints

• Modeling piecewise constant curvature as a chain of links and joints 
decreases accuracy

• Overhead for physics that we can not utilize
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SoftSim: A Kinematic Simulator for Soft Robots

• Support any number of segments

• Computes forward kinematics
• Shape and tip position of the arm

• Support for environment with 
obstacles and collision detection

• Manual control via sliders or 
automatic control
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SoftSim: Collision Detection

• Standard approach: Circular Arc-Line intersection test with bounds
• Precise but slower to compute compared to…

• Axis-Aligned Bounding Boxes (AABB)
• Fast but chance of false positive
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SoftSim: Collision Detection

• Standard approach: Circular Arc-Line intersection test with bounds
• Precise but slower to compute compared to…

• Axis-Aligned Bounding Boxes (AABB)
• Fast but chance of false positive

• Our Approach:
• Use AABB to rule out clearly non-collision cases

• Use Circular Arc-Line intersection last
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Background: Rapidly-Exploring Random Trees
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Goal configuration
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Background: Rapidly-Exploring Random Trees
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Background: Rapidly-Exploring Random Trees
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Simulation Results

• > 90% success rate out of feasible plans for all thicknesses

• Simple RRT works well enough for 3 segment arm
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Hardware Demonstration
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Summary

Using current approaches for soft robot planning:
• Utilized our simulator to create motion plans
• RRTs can be adapted to generate plans for soft manipulators
• Demonstrated motion planning on a physical arm

Gina Olson, Scott Chow, Austin Nicolai, Callie Branyan, Geoffrey Hollinger, Yiğit Mengüc. “A 
generalizable equilibrium model for bending soft arms with longitudinal actuators.” International 
Journal of Robotics Research, Oct. 2019

24



Physics
Model

desired
curvature

control
action

?

Model-Based Control

Physics
Model

desired
curvature

control
action

Physics
Model

desired
curvature

control
action

?

17



Hybrid Control
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Proposed Approach
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• Staged arm configurations
• Consecutive links widths decrease

• 4 widths
• 80mm used as base link
• 65mm, 50mm, 35mm vary positions

• 3 arm configurations
• 80-65-50
• 80-65-35
• 80-50-35

Load State Estimation: Method

unique load
states
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• Pressure vs curvature curves are smooth
• highly predictive of

• Take advantage of this temporal relationship
using an LSTM

• Sweep through entire actuator pressure range
and classify configurations using all                      pairs

Load State Estimation: Method
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• Not efficient to generate 
thousands of sweeps by hand

• Augment training data by stitching
together portions of recorded sweeps

• Mimics real-world disturbances
a

Load State Estimation: Training Data
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• Decompose control input prediction
• A

• Benefits:
• Minimize error from incorrect network predictions
• Model gives lower bound
• Actuator ratings give upper bound

• Learn using fully connected deep network
• Inputs:
• Output: 

Control Input Mapping: Method
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• Efficiently gather from entire arm sweeps
• Many input/output pairs per sweep
• Each sweep performs slightly different so

data pairs are naturally varied

• Combine all data into single distribution
• a

Control Input Mapping: Training Data
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• Methods:
• Fully Connected (baseline)
• LSTM (ours)

• Metrics:
• Precision
• Recall

Experiment 1: Classification Accuracy
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l LSTM is more accurate

l LSTM is more efficient

• Network Size:
• Fully Connected: 250,883
• LSTM: 11,373

Experiment 1: Classification Accuracy
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l Convergence Time:

- Fully Connected: 326 epochs

- LSTM: 287 epochs



• Individual fits achieve similar performance as deep network, but scale poorly
• Deep network performs best when link characterization is more challenging 

(65mm segment)
• Deep network increasingly outperforms the single surface fit as more load states 

are considered

Experiment 2: Curvature Accuracy
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Fewer Load States



• Model only control performs very poorly
• Our hybrid approach gets within 1 cm of baseline
• Error in both our approach and baseline due to link shortening along the 

segment arc

Experiment 3: End-Effector Accuracy
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Experiment 3: End-Effector Accuracy
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The three dots represent the 
final end-effector location for 
the different control methods.
• Green: Curvature control
• Magenta: Quasistatic model 

only 
• Red: Quasistatic plus load 

model control (proposed)





State of affairs

Althoefer, 2015McMahan et al., 2006

Soft arms exist.
Each arm is capable in at least one aspect.

Cianchetti et al., 2012

Large workspace.
Lifted 620 g.

Smaller workspace.
Pushed 800 g.

Highly dexterous.
Moves naturally in water.



Problem

Althoefer, 2015McMahan et al., 2006

If we wanted a broader workspace or to lift a larger load, would we know 
how the design should change?

Cianchetti et al., 2012



Soft arms as designed structures

• Each design has a certain immutable 
capability (reach & load).
• Model-guided design can identify 

capable arm architectures…

Goal: Develop design analysis tools for soft arms and use them to 
identify capable soft arm designs. 

• …but appropriate generalizable arm 
models do not exist. 



What makes up a soft arm?

Planar

Spatial
(Omnidirectional)

n segments with mn actuators



Generalizable models of soft arms

“Top Down” Modeling (not generalizable): Build an arm. Test to 
determine mass m, stiffness k, etc. Use parameters in model (e.g., 
Euler-Lagrange eqs)

Our approach:

“Bottom Up” Modeling (generalizable): Each actuator produces some 
force F for a given strain and pressure. Arm stiffness is a resultant of 
combined actuator stiffnesses. 



Actuators as active materials

Abstract as F = F(ε, P) but models must include deformations outside 
of actuation.

Nominal Extended



Euler-Bernoulli beam model

The actuator model is coupled with a 
Euler-Bernoulli beam model. 

The actuator arrangement and segment 
lengths are automatically considered.

Model form: discrete, geometrically 
exact, base curve length change 
considered.



Planar workspace



Taper


