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Outline

 Soft Simulation and Planning

* Learning Load States
* Generalizable Mechanical Models (Gina Olson)




it is safe for them to enter the environment. Robots can help address this issue by distancing human operators
from dangerous environments, while still leveraging their skills in planning complex manipulation tasks. Rigid
robotic manipulators, however, are typically not suitable for delicate manipulation tasks. To address this
limitation, this project explores the design and control of soft robotic arms inspired by the octopus.

The objective of this research is to establish a framework for underwater manipulation, combining shared
autonomy between human operators and robots with mechanically-directed soft actuation and sensing. The
proposed work will examine new actuator morphologies, alternative fabrications techniques, and the use of
stretchable integrated liquid metal sensors. To control the soft grippers, this project develops a planning and
control interface that utilizes machine learning techniques to leverage human operators' skills at quickly
identifying stable grasps. The physical attributes of the soft grippers will be designed in tandem with
algorithms, which will provide improved understanding of underwater interaction and shared autonomy.
Dexterity and compliance of the soft manipulators will be evaluated for large confact o aamsaultinaint
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What we want to simulate
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Why an In-House Simulator?

Simulators such as Gazebo assume robots are defined by links and joints

Modeling piecewise constant curvature as a chain of links and joints
decreases accuracy

Overhead for physics that we can not utilize




Support any number of segments

Computes forward kinematics

Shape and tip position of the arm

Support for environment with
obstacles and collision detection

Manual control via sliders or
automatic control
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SoftSim: Collision Detection

Standard approach: Circular Arc-Line intersection test with bounds

Precise but slower to compute compared to...

Axis-Aligned Bounding Boxes (AABB)

Fast but chance of false positive
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SoftSim: Collision Detection

- Standard approach: Circular Arc-Line intersection test with bounds

« Precise but slower to compute compared to...

- Axis-Aligned Bounding Boxes (AABB)

« Fast but chance of false positive

- Our Approach:
« Use AABB to rule out clearly non-collision cases

« Use Circular Arc-Line intersection last
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Simulation Results

Arm Thickness (cm) 5.0 4.0 3.0 1.8
Max Curvature (cm™') 0.044 0.055 0.073 0.122

Successful Plans 40 39 41 39
% out of Feasible 95.2% 92.9% 97.6% 92.9%

- >90% success rate out of feasible plans for all thicknesses

- Simple RRT works well enough for 3 segment arm



Hardware Demonstration
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Summary

Using current approaches for soft robot planning:
- Utilized our simulator to create motion plans
- RRTs can be adapted to generate plans for soft manipulators

- Demonstrated motion planning on a physical arm

Gina Olson, Scott Chow, Austin Nicolai, Callie Branyan, Geoffrey Hollinger, Yigit Menguc. “A
generalizable equilibrium model for bending soft arms with longitudinal actuators.” International

Journal of Robotics Research, Oct. 2019



Model-Based Control
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Hybrid Control
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Proposed Approach
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Load State Estimation: I\/'D‘P‘mr4
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Load State Etimatin: ethod

* Sweep through entire actuator pressure range
and classify configurations using all(usase. Kvase) pairs



Load State Estimation: Training Data

* Mimics real-world disturbances



Control Input Mapping: Method

* Learn using fully connected deep network
* Inputs: (s.k)
* Qutput: Uload



* Combine all data into single distribution
*(u,K.s) = Poaa, + N(}t. o)



Experiment 1: Classification Accuracy

* Methods:
* Fully Connected (baseline)
e LSTM (ours)

* Metrics:
* Precision
e Recall



Precision Recall
Mean 80-65-50 | 80-65-35 | 80-50-35 Mean 80-65-50 | 80-65-35 | 80-50-35
Fully Connected 94.85% 100.0% 88.89% 95.65% 94.67% 100.0% 96.0% 88.0%
LSTM (proposed) | 97.33% 100.0% 96.0% 96.0% 97.33% 100.0% 96.0% 96.0%

* Network Size:

* Fully Connected: 250,883

* LSTM: 11,373

Convergence Time:

-~ Fully Connected: 326 epochs

—  LSTM: 287 epochs

e LSTM is more efficient




80mm Segment 65Smm Segment SO0mm gegment

Mean Max Mean Max Mean Max
Error (m—1) Error (m—1) Error (m—1) Error (m—1) Error (m—1) Error (m—1)

Curvature Control | ) 5 4 () 0.047 0.022 & 0.016 0.062 0.026 & 0.017 0.079
(baseline)
Individual Curve |, 037 | g 0.086 0.189 4 0.152 0.552 0.076 & 0.047 0.160
Fit Control

ngte SUrlace 0.071 %+ 0.041 0.175 0.204 + 0.177 0.551 0.082 %+ 0.052 0.194
Fit Control
Deep Network 0.037 + 0.028 0.123 0.103 + 0.108 0.403 0.072 + 0.041 0.154
Control (proposed)

* Deep network increasingly outperforms the single surface fit as more load states
are considered



Arm 80-65-50

Arm 80-65-35

Arm 80-50-35

Mean Max Mean Max Mean Max
Error (cm) Error (cm) Error (cm) Error (cm) Error (cm) Error (cm)
((b“]:)l‘l:::f Control 2.791 £+ 0.380 3.386 3.342 + 0.402 4.099 3.672 + 0.626 5.103
asistati | i i
8::1‘:'2‘;[:;.3110‘ cl 9.215 + 5.535 17.267 9.572 + 5.484 18.171 8.110 + 4.457 15.162
Quasistatic Flus Load 3.468 + 0.512 4.490 3.9282 + 0.602 5.339 4125 + 0.698 5.479

Model Control (proposed)

* Error in both our approach and baseline due to link shortening along the

segment arc




The three dots represent the
final end-effector location for
the different control methods.
* Green: Curvature control

 Magenta: Quasistatic model
only

* Red: Quasistatic plus load
model control (proposed)

(a) Curvature control

(b) Quasistatic model only control

(¢) Quasistatic plus load model control







State of affairs

Soft arms exist.

Each arm is capable in at least one aspect.

Large workspace. Smaller workspace. Highly dexterous.
Lifted 620 g. Pushed 800 g. Moves naturally in water.

McMahan et al., 2006 Althoefer, 2015 Cianchetti et al., 2012



Problem

If we wanted a broader workspace or to lift a larger load, would we know
how the design should change?




* Each design has a certain immutable
capability (reach & load).

* Model-guided design can identify
capable arm architectures...

e ...but appropriate generalizable arm
models do not exist.

Goal: Develop design analysis tools for soft arms and use them to
identify capable soft arm designs.



What makes up a soft arm?

n segments with

Planar

Spatial
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m, actuators




Generalizable models of soft arms

“Top Down” Modeling (hot generalizable): Build an arm. Test to
determine mass m, stiffness k, etc. Use parameters in model (e.g.,
Euler-Lagrange eqs)

Our approach:

“Bottom Up” Modeling (generalizable): Each actuator produces some
force F for a given strain and pressure. Arm stiffness is a resultant of
combined actuator stiffnesses.




Actuators as active materials

Abstract as F = F(g, P) but models must include deformations outside
of actuation.

Nominal Extended
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Euler-Bernoulli beam model

The actuator model is coupled with a
Euler-Bernoulli beam model.

The actuator arrangement and segment o 2.
lengths are automatically considered. | LA N Base curve

, ——- Neutral axis

Model form: discrete, geometrically
exact, base curve length change
considered.




Planar workspace
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