Biomimetic Sensory Solutions for Dexterous Robotic

Hands

PI: Nitish V. Thakor^{1,2}

Students: Mark M. Iskarous¹ and Sriramana Sankar¹

¹Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD USA ²Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, Singapore

SUMMARY

Our central focus is to provide enhanced tactile sensory perception through sensor-enabled dexterous robotic hands. We incorporate tactile sensors to achieve two goals: 1) model mechanoreceptors and develop algorithms for neural encoding with digital output mimicking sensorized skin and 2) flexible neuromorphic sensing and decoding to provide perception and

RESULTS

- Stimulation through transcutaneous electrical nerve stimulation (TENS)
- Discrimination experiment of four stimulation conditions on three able-bodied subjects

understanding of textures and shapes.

		AB01		AB02		AB03			100.00 //	100.0070		
		PW (ms)	Freq (Hz)	PW (ms)	Freq (Hz)	PW (ms)	Freq (Hz)		Cond 1	Cond 2 Subjec	Cond 3 t AB02	Cond 4
n	1 2 3 4	1 10 1	10 10 50	2.5 10 2.5	10 10 50	5 10 5	5 5 50	Cond 1 Cond 2	100.00% 100.00%	0 100.00% 0 100.00%	5 100.00% 5 100.00%	5 100.00% 5 100.00%
itio												
puq												
C		10	50	10	50	10	50					
	-							Cond 3	83.33%	100.00%	100.00%	50.00%
	>	Confusion matrix shows the							100.00%	100.00%	33.33%	100.00%
		subject's ability to identify if the							Cond 1	Cond 2	Cond 3	Cond 4
		condi	tions	presei	nted	were tl	he			Subjec	t AB03	
		same	or di	fferent	-			Cond 1	100.00%	16.67%	100.00%	100.00%
	>	Subjects successfully distinguished different stimulation conditions through sensory feedback						Cond 2	50.00%	100.00%	100.00%	100.00%
								Cond 3	100.00%	83.33%	100.00%	0.00%
			0					Cond 4	83.33%	100.00%	0.00%	100.00%
									Cond 1	Cond 2	Cond 2	Could

IMPACT

Natural tactile sensory feedback for upper limb amputees for more natural touch, texture, shape, and object recognition

- Neuromorphic encoding and stimulation for object detection
- Receptor specific
 modeling for enhanced
 performance

Compliant palpation of the tactile environment

- Foundation for multisensory skin
 and sensory perception in
 autonomous sensorized robots and
 human interactions
- Educational impact through Neural
 Prostheses course for undergrads
 and student training for local high
 school students and REUs

References

- [1] L. Osborn, A. Dragomir, J. Betthauser, C. Hunt, H. Nguyen, R. Kaliki, and N. V. Thakor, "Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain," *Science Robotics*, vol. 3, no. 19, eaat3818, 2018.
- [2] M. Iskarous, H. Nguyen, L. Osborn, J. Betthauser, and N. V. Thakor, "Unsupervised learning and adaptive classification of neuromorphic tactile encoding of textures," *Conf Proc IEEE Biomed Circuits Syst (BioCAS)*, 2018, pp. 1-4.
- [3] M. M. Iskarous and **N. V. Thakor**, "E-Skins: Biomimetic Sensing and Encoding for Upper Limb Prostheses," in *Proceedings of the IEEE*, vol. 107, no. 10, pp. 2052-2064, Oct. 2019.
- [4] S. Sankar, D. Balamurugan, A. Brown, K. Ding, X. Xu, J. Low, C. Yeow, and **N. V. Thakor**, "Texture discrimination with a soft biomimetic finger using a flexible neuromorphic tactile sensor array and sensory feedback," under review in *Soft Robotics*, 2020.

