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Abstract— Mobile robots operating in a shared environment
with pedestrians are required to move provably safe to avoid
harming pedestrians. Current approaches like safety fields use
conservative obstacle models for guaranteeing safety, which
leads to degraded performance in populated environments.
In this paper, we introduce an online verification approach
that uses information about the current pedestrian velocities to
compute possible occupancies based on a kinematic model of
pedestrian motion. We demonstrate that our method reduces
the need for stopping while retaining safety guarantees, and
thus goals are reached between 1.4 and 3.5 times faster than
the standard ROS navigation stack in the tested scenarios.

I. INTRODUCTION

Mobile service robots often need to operate freely and
flexibly in environments occupied by pedestrians. Because
collisions could cause serious harm, particularly in settings
with heavier robots, safety mechanisms always have to be
considered. Despite the large body of work in path planning
and obstacle avoidance [1], [2], in practice, most production
robots still rely on hardware safety devices such as certified
laser scanners. The main reason is that demonstrating the
safety of software to the satisfaction of a safety body is
difficult, and difficulty scales with the complexity of the
algorithm.

In environments with none or only a few humans, a
common way to reduce the problem is through a simple
model of human motion: Either assume people will always
stop (ISO 3691-4 [3]), or assume they always move at
full speed (ISO 13855 [4] and ISO 13482 [5]). The latter
is usually applied and results in a circular safety area as
illustrated in the left part of Fig. 1.

Unfortunately, a circular field seriously restricts robot mo-
tion, including in areas which common sense would indicate
as usable, such as beside or following a walking pedestrian.
In more populated environments, it leads to frequent stopping
of the robot and is therefore almost unusable.

This paper, in contrast, proposes a safeguard that predicts
all possible motions based on a kinematically-accurate model
of human motion, as well as the humans’ current position
and velocity. It guarantees the same level of safety but allows
much more efficient motion.

Specifically, we compute so-called reachable sets that
include all possible future occupancies of pedestrians and
the robot based on their kinematic models. Based on these
sets, we consider a velocity command as verified safe if
the robot can stop before entering the reachable set of any
pedestrian, i.e., no collision can occur before the robot stops

(passive safety [6]). From the example reachable sets shown
on the right side of Fig. 1 it is immediately obvious that they
leave much more maneuvering space compared to the static
approach on the left.

While our current kinematic model considers walking
pedestrians only, our approach is extensible to multiple mo-
dels, e.g., to other dynamic behaviors (running, wheelchairs,
etc.) as well as to structured environments. For instance,
reachability analysis has also already been used in other
safety-related applications such as autonomous driving [7]
and robot manipulators [8].
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Fig. 1: Standard safety field (left) compared to our method.

We evaluate the performance of our approach regarding
safety and efficiency in a Gazebo-based simulation environ-
ment which combines the standard ROS navigation stack1

with a safeguard based on either i) the one proposed in
ISO 13482, ii) an obstacle model of the braking ICS appro-
ach [9], or iii) our method. We use three different scenarios
and two pedestrian densities. Here, our approach improves
the average velocity by a factor of 1.4 – 3.5. In absolute
numbers, the average velocities for an easy situation are 1 m/s
(our approach) compared to 0.64 m/s (ISO 13482), or, more
striking for a difficult situation, 0.92 m/s vs 0.27 m/s.

In the following, we first outline the main ideas of reacha-
bility analysis, passive safety, and reachable set conformance
in Sect. II. In Sect. III, we describe the modeling and online
verification approach. Sect. IV shows the evaluation results.
Works related to our approach are described in Sect. V.

II. PRELIMINARIES / DEFINITION OF TERMS

In this section we briefly introduce the main methods and
terms relevant to our approach.

1http://www.ros.org/navigation



A. Reachability analysis of continuous systems

We model a system as a differential equation ẋ(t) =
f (x(t),u(t)), where t, x and u are time, state, and input
respectively. The initial state x(0) can be chosen arbitrarily
within the initial set X 0. The time-dependent input trajec-
tory u(t) is allowed to vary, but is assumed to stay in a
time-dependent input trajectory set U (t). These two sources
of non-determinism are used to model the fact that we do not
exactly know the current positions and velocities of objects
and their behavior in the future, see Sect. III-A.

Reachability analysis is the computation of reachable sets
of states over time of such a model. For instance, the
reachable sets for a robot and two pedestrians for different
points in time are illustrated in Fig. 1. Reachable sets are
formally defined as follows:

Definition 1 (Reachable Set (Reachset), see [7]). Given an
initial set X 0 and a time-dependent input trajectory set
U (t), the reachable set R(t) at time t of a system of the
form ẋ(t) = f (x(t),u(t)) is the set of all reachable states at
time t:

R(t) =
{

x(t) =
∫ t

0
f (x(τ),u(τ))dτ + x(0)

∣∣∣
x(0) ∈X 0,∀τ ∈ [0, t] : u(τ) ∈U (τ)

}
. (1)

We are using CORA for efficient computation of reachable
sets for high dimensional and nonlinear problems. Although
CORA itself has yet to be proved formally in a theorem
prover such as in [10], the method proposed in this work
can be proven similarly.

For safety analysis it is very important to account for
system uncertainties. Since we do this by using the non-
determinism of the model, R(t) is a set containing all
possible future states of the system at a time t. We verify
safety by checking that there is never an intersection between
reachable sets R(t) of our system and sets of unsafe states
(e.g. position of surrounding objects, unsafe velocities, etc.).

B. Passive Safety & Safe Motion Trajectory

Passive safety means that no collisions with surrounding
pedestrians are allowed to happen when the robot moves
[11]. This is equivalent to ensuring a complete stop before
a potential collision. We therefore choose an input trajectory
that brings the robot to a stop. The trajectory is considered
safe if the following property holds:

Definition 2 (Safe Motion Trajectory). An input trajectory
u(t) of a robot system that brings the robot to a safe stop at
tstop is safe according to passive safety, if

∀t ∈ [0; tstop] : Rped(t)∩Rrob(t) = /0, (2)

where Rped(t) are pedestrian reachable sets and Rrob(t) are
robot reachable sets with input trajectory u(t).

C. Model Conformance

Validating that our pedestrian model conforms to real pe-
destrian behavior is very important for the overall verification

technique. For our model-based results to hold in reality, our
model of the pedestrian has to conform to real behavior. We
therefore check our pedestrian model against real measured
data before using it for verification.

Recently, we showed that for verifying the absence of col-
lisions, reachset conformance testing is a suitable approach
to check the conformance of models to real behavior [12].

Definition 3 (Reachset Conformance). Measured state data
p1, . . . , pn of a pedestrian with timestamps t1, . . . , tn is rea-
chset conformant to the pedestrian model, if the following
holds:

∀i : pi ∈Rped(ti). (3)

We evaluate reachset conformance in Sect. IV-A based on
the pedestrian model introduced in the next section.

III. MODELLING AND VERIFICATION

In this section, we provide the models for the pedestrians
and the robot that we employ for the reachable set compu-
tations and give an algorithm for the online computation of
safe motion trajectories based on reachable sets.

A. Pedestrian Modeling

We model a single pedestrian as a point on a two-
dimensional plane. The shape of the pedestrian is then
taken into account after the reachable set computation by
enlarging the reachable sets accordingly. We assume that
we can measure the pedestrian’s position and velocity with
some known uncertainty. Also, we assume that the pedestrian
performs a forward walking motion while possibly changing
directions and that the pedestrian has a maximum speed
and acceleration. We represent these constraints as two
separate differential equation models: one constraining the
acceleration and one constraining the velocity. Reachable
states of the pedestrian are then states which are reachable
under both models.

It would be possible to merge these two models into
one that includes state constraints. This can be realized in
CORA by a hybrid model, for which reachable sets are
difficult to obtain. However, it has been shown in [13] that
for reachability analysis it is possible to define multiple
abstracting models, such that their reachable set intersection
overapproximates the reachable sets of the hybrid model.

Therefore, we define the following two models. The
acceleration-constrained model

ṗx = vx, ṗy = vy, v̇x = ax, v̇y = ay

U
(a)

ped =
{
(ax,ay) ∈ R×R|a2

x +a2
y ≤ a2

max
} (4)

has the two-dimensional position p and velocity v as its
state variables. The input trajectory is a time-invariant set
representing all possible two-dimensional accelerations and
bounded by amax. The velocity-constrained model

ṗx = vx, ṗy = vy

U
(v)

ped =
{
(vx,vy) ∈ R×R|v2

x + v2
y ≤ v2

max
} (5)

has only the two-dimensional position p as its state variables,
while the velocity v is instead an input bounded by vmax.



The initial position [px(0), py(0)] and initial velocity
[vx(0),vy(0)] are assumed to lie in the sets X

(a),0
ped and

X
(v),0

ped , respectively. Since both models are used to predict
possible pedestrian behavior, their initial states can be inter-
preted as the currently measured position and velocity of the
pedestrian, plus some assumed measurement uncertainty.

The reachable sets of a single pedestrian are obtained by
computing the reachable sets R

(a)
ped(t) and R

(v)
ped(t) (Fig. 2)

of both models and then taking their intersection Rped(t) =
R

(a)
ped(t)∩R

(v)
ped(t). Lastly, we enlarge all Rped(t) by a circle

in the (px, py)-dimensions to account for the shape of the
human; any other shape can also be used.
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Fig. 2: Reachable sets according to the acceleration-
constrained (left) and velocity-constrained (right) model.

B. Robot Modeling

For modeling the mobile robot we use a kinematic model
of a differential-drive robot

ṗx = vtra cos(φ), ṗy = vtra sin(φ), φ̇ = vrot .

The initial state [px(0), py(0),φ(0)]T represents the current
pose of the robot and is bounded by an initial set X 0

rob
that accounts for the inaccuracy of the robot’s localization
algorithm. The input of the system is the vector [vtra,vrot ]

T ,
consisting of the translational and rotational velocities of the
differential drive. For verification we consider that the input
is not allowed to change at a larger rate than the maximum
acceleration of the robot. In the same fashion as for the
reachable sets of the pedestrians, we add the shape of the
robot to the (px, py)-dimensions of all Rrob(t).

C. Online Motion Trajectory Verification

In our approach, we verify passive safety (Sect. II-B)
of motion commands for every step k, where the sampling
time is ∆t. To this end, we employ reachability analysis to
predict whether the robot can still come to a collision-free
stop after applying the input u(k)plan = [v(k)tra,v

(k)
rot ]

T to the robot
motors for a time step. For that we define a candidate input
trajectory u∗(t): It begins with the planned motion command
u∗(t) = uplan for t ∈ [0,∆t] and continues with u∗(t) = ubrk(t)
for t ≥ ∆t. The braking trajectory ubrk(t) brings the robot
to a stop u(tstop) = [0,0]T and the slope is the maximum
deceleration of the robot system (see Fig. 3). Note that t = 0
always corresponds to the current time step in this analysis,

while signal values and reachable sets at t > 0 correspond to
(predictions of) future behavior.
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Fig. 3: Candidate input trajectory u∗(t) that we use to
compute Rrob(t), here shown for vtra. vrot is analogous.

We then compute pedestrian and robot reachable sets and
verify u∗(t) by checking whether u∗(t) satisfies the property
in Def. 2. If u∗(t) is verified, we store u(k)sa f e(t) := u∗(t) as a

safe input trajectory and apply u(k)sa f e(t) to the motors for the
next time step ∆t.
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Fig. 4: Continued use of previously verified safe trajectory
u(k−1)

sa f e (t), shifted by ∆t, if u∗(t) is not safe

If u∗(t) is not successfully verified, we simply execute the
previously verified safe input trajectory u(k)sa f e(t) := u(k−1)

sa f e (t+
∆t) (see Fig. 4), which is shifted by ∆t. Thus, we ensure that
only inputs verified as safe are applied to the motors. The
robot does not necessarily approach zero velocity if during
the braking maneuver a new motion command is verified as
safe and applied to the motors. This approach is implemented
as a safety control module (Alg. 1) between the planning
module and the robot motor control (see Fig. 5). We initially
set u(k−1)

sa f e (t) := [0,0]T .
Depending on the hardware, robot control often encounters

a system delay. We can easily account for that by extending
u∗(t) with all the delayed motion commands in [−tdelay;0].

IV. EVALUATION

In the following, we present the results of evaluating our
pedestrian model (Sect. IV-A), and we present results on the
performance of our online verification approach (Sect. IV-B).

A. Model Evaluation

We check whether the pedestrian model of Sect. III-A
overapproximates the real behavior of a walking-only human
by performing a reachset conformance test (Def. 3) using
ground truth pedestrian trajectories from a labeled video
source of a street scene in Zurich, Switzerland [14]. We
check if the trajectories lie inside the computed pedestrian
reachable sets. This test was performed for a time horizon



Algorithm 1 Online safety control (step k, sampl. time ∆t)

Input: u(k−1)
sa f e (t),u(k)plan,X

0
rob,X

0
ped,1..n for n pedestrians

Output: u(k)sa f e(t)

1: Set u∗(t) :=

 u(k)plan 0≤ t < ∆t
ubrk(t) ∆t ≤ t ≤ tstop
0 tstop < t

(see Fig. 3)

2: Compute Rrob(t) with X 0
rob, u∗(t) for t ∈ [0; tstop]

3: Compute Rped,i(t) with X 0
ped,i for t ∈ [0; tstop] for all

i = 1..n pedestrians
4: if ∀i : Rped,i(t)∩Rrob(t) = /0 for all t ∈ [0; tstop] then
5: Set u(k)sa f e(t) := u∗(t) for all t ≥ 0
6: else
7: Set u(k)sa f e(t) := u(k−1)

sa f e (t +∆t) for all t ≥ 0
8: end if

TABLE I: Pedestrian model and conformance test results

Pedestrian Model Conformance Test
Time horizon 1.6 s Pedestrians 420

amax 0.6 m/s2 Gener. test cases 20084
vmax 2.0 m/s Passed tests 19843

Ped. diameter 0.54 m Rate 98.80 %
X 0

ped : (px, py)-uncertain. ± 0.1 m
X 0

ped : (vx,vy)-uncertain. ± 0.1 m/s

of 1.6 s, which is larger than the largest tstop of the robot in
our evaluation (Sect. IV-B).

For the pedestrian model, we parameterize vmax = 2.0 m/s
as suggested by [4], because it is the transition speed between
walking and running. To set amax, we apply numerical
differentiation and filtering on the velocity data of the video
source and then set amax = 0.6 m/s2 as an overapproximative
value. The parameters of our model are shown in Tab. I.

The results (Tab. I) show good reachset conformance
results. However, there are some unsuccessful tests. A closer
look at these failed cases reveals that the unsuccessful tests
are caused by special pedestrian behavior lying outside of
our initial assumptions such as changing directions too fast
(12 cases), and velocities faster than vmax (229 cases).

This conformance test shows that our pedestrian model is
reachset conformant to walking-only pedestrians which do
not change their direction of movement very abrupt. This
pedestrian model can therefore be used for our verification
approach if we are able to constrain human behavior to
walking-only and slow-direction-changing, which is possible
in a closed environment setting, as in production plants.
However, our model is not reachset conformant to all pede-
strian behaviors and there are two possible solutions. First,
we could increase the bounds amax and vmax leading to a
richer set of behaviors and thus, to bigger reachable sets.
Second, one may consider hybrid models switching to more
conservative models, as suggested in [13], once the special
cases above are detected. In addition, runtime monitors as
proposed by ModelPlex [15] could be used to continuously
validate the correctness of the used model at runtime.

B. System Evaluation

We evaluate the performance of our online verification in
a ROS simulation for different scenarios where the robot has
to navigate in the presence of pedestrians.

Considered Approaches: We compare three approaches
with different obstacle models. First, we use our approach
introduced in the previous sections. Second, we consider an
ISO13482-compliant safety field [5] with 360◦ warning and
protective fields. The size of the safety field is fixed and
dimensioned based on the maximum speed of the robot and
the assumption that a pedestrian may approach the robot at
full speed at any point in time. In contrast, the size of the
reachable sets in our approach is dynamic and depends on
the current velocity of the robot and pedestrians. The third
approach is based on the obstacle model used in braking
ICS [9] and by Mitsch et al. [11]. This obstacle model
assumes that obstacles may always move at full speed in any
direction if we do not know their future behavior and requires
that the robot is able to come to a rest before the obstacle
may hit it. We refer to this approach as braking ICS in the
following. In contrast, our approach computes reachable sets
based on current velocity and direction of movement.

Experiment Setup: We execute our evaluation based on
ROS Indigo. The physics simulation is carried out in Ga-
zebo 72 and the robot uses a standard move base based on
the Dynamic Window Approach (DWA, [16]). We use the
default parameters from the Indigo release for the move base,
except that we set the maximum velocity and acceleration for
the differential drive robot to vtra = 1.5 m/s, vrot = 2.0 rad/s,
atra = 1.5 m/s2, and arot = 1.0 rad/s2. Initially, the robot is
stationary. The robot model is based on the Robotino models
for Gazebo by RWTH Aachen3, where we use its laser
scanner for navigation and use the standard Planar Move
Plugin to steer the robot.

The setup of our ROS system is shown in Fig. 5. The
pedestrian simulation (upper left box) computes the pede-
strian positions and velocities that are then sent to Gazebo
(upper right box) and to the online safety control. The robot
simulation in Gazebo (left box) simulates the robot actuators
and provides laser scan data for localization in our map. The
localization is performed in amcl, and information on robot
pose and static obstacles contained in the laser scans are
used by the ROS move base for computing a path to the
goal position (lower right boxes). In addition, the move base
contains the DWA implementation that generates the velocity
commands for the robot. These velocity commands are then
fed into the online safety control node (middle right box) and
only forwarded to the robot actuators in the Gazebo Robot
Simulation if they are safe. In our experiments, the whole
setup of the ROS system remains unchanged except that we
change the safety checker inside the online safety control.

For improving the efficiency of our approach and to enable
real-time performance, we created a library of reachable sets
for the pedestrians at design time that we store in a look-

2http://gazebosim.org/
3https://git.fawkesrobotics.org/gazebo-models.git



up table (14 MB). Since the pedestrian model equations are
independent from the initial position, we only need to sample
based on the initial velocity, which we do in steps of 0.1 m/s.

Gazebo : pedestrian_ ..n

Gazebo :Robot Sim

Gazebo Plugin:
planar_move

Gazebo Plugin:
gpu_laser

Gazebo : pedestrian_1

1. Braking ICS
2. Safeguard

3. Online Verification

move_base

set pose
set velocity

pedsim_simulator,
pedsim_ros, pedsim

Pedestrian Simulation

Planning

amcl

Localization

Safety

pedestrian

laser scan data

Fig. 5: Setup of the simulation environment in ROS.

The evaluations are carried out on a map that is illustrated
in Fig. 6. The map is 24 m times 30 m from wall to wall
and pedestrians walk continuously counter-clockwise along
the green area. For obtaining realistic pedestrian motion, we
simulate pedestrian motion in a dedicated Pedestrian Simu-
lator4 (PedSim) that is based on social forces. The simulated
pedestrian positions are then transferred to Gazebo, while
the robot position is also considered in PedSim such that the
pedestrians react to the robot.

cross-flow anti-flowflow

Fig. 6: Illustration of the map used for the experiments.

In our experiments, the robot will always move from top
to bottom through the green area with different starting
positions. Depending on the starting position, we create
three scenarios for encountering pedestrians: flow (move
in same direction as pedestrians), cross-flow (pedestrians
coming from left or right), and anti-flow (pedestrians appro-
aching from front). In addition, we consider two pedestrian
densities: light population and dense population. For light
population, we place 25 pedestrians uniformly at random

4https://github.com/srl-freiburg/pedsim_ros

robot

Fig. 7: Gazebo screenshot for a dense antiflow scenario.

in the green area; for dense population, we distribute 60
pedestrians. We create 10 different placements of pedestrians
for each density with a minimum distance of 0.5 m between
any two pedestrians. Fig. 7 shows a Gazebo screenshot of a
typical situation in anti-flow scenarios with dense population.

Assumptions: The current pose and velocity of each pede-
strian, which we require as inputs to our online verification,
would need to be provided by a people-tracking approach on
a real robot. In simulation, we instead take this information
directly from PedSim. This therefore represents the best case,
where we can track all pedestrians perfectly and exactly
know their current position and velocity. In order to account
for the imprecision of current perception and tracking ap-
proaches, we add an uncertainty of 0.1 m to the pedestrian
positions and 0.1 m/s to the pedestrian velocities to make our
simulation more realistic. Finally, we have also included the
actual control delay of 100 ms that the real hardware exhibits.

Experimental Execution: For each scenario (flow, cross-
flow, anti-flow), and for both light and dense populations,
we generate 10 different pedestrian placements. All three
approaches are executed on all of the situations. Based on
the collected data, we compute (1) whether the goal has
been reached, (2) how long it took to reach the goal, (3)
the distance traveled by the robot, (4) the average velocity,
and (5) the number of unsafe collisions. An unsafe collision
is one in which the robot’s velocity is greater than 0.

Results: The results are summarized in Table II for lig-
htly populated situations and in Table III for the densely
populated ones. Throughout our simulation runs, no unsafe
collisions occurred for any of the approaches, so we omitted
the corresponding column in the result tables. All values are
arithmetic means over all runs.

The results clearly show that our method performs best in
all cases by a large margin. Even in the simplest situation,
motion with a lightly populated flow, our method is 1.4
times faster, and in the dense situation this even increases
to a factor of 3.5. The example in Fig. 8 illustrates how
the robot is able to follow a group of pedestrians in a flow
scenario with light population when applying our online
verification approach. It is also notable that both safety field
and Braking ICS exhibit very bad performance in the anti-
flow situation. This is despite the fact that our pedestrian



robot

Fig. 8: Gazebo screenshots from the same position with a time step of approx. 1 s for a light flow scenario where the robot
uses the online verification approach.

TABLE II: Results from ROS Simulation (Lightly Populated Scenarios)

Flow Cross-flow Anti-flow
Approach @Goal Time(s) Len(m) Vel(m/s) @Goal Time(s) Len(m) Vel(m/s) @Goal Time(s) Len(m) Vel(m/s)
Braking ICS 10 34.3 22.9 0.73 10 40.0 23 0.63 10 116.1 23.0 0.21
Safety Field 10 37.9 22.9 0.64 10 35.7 23 0.68 10 74.8 22.9 0.32
Onl. Verif. 10 22.4 22.9 1.04 10 26.3 23.2 0.91 10 52.3 23.0 0.45

TABLE III: Results from ROS Simulation (Densely Populated Scenarios)

Flow Cross-flow Anti-flow
Approach @Goal Time(s) Len(m) Vel(m/s) @Goal Time(s) Len(m) Vel(m/s) @Goal Time(s) Len(m) Vel(m/s)
Braking ICS 10 108.0 22.9 0.25 10 114.2 23.1 0.21 10 519.5 23.2 0.05
Safety Field 10 96.0 22.9 0.27 10 76.9 23 0.31 10 251.5 23.0 0.10
Onl. Verif. 10 26.0 23 0.92 10 37.8 23.1 0.65 10 159.2 23.2 0.15

simulator is cooperative, i.e. humans attempt to actively
avoid the robot, and that the robot also uses a normal obstacle
avoidance algorithm (albeit one that makes a static obstacle
assumption). To this end, the effect of the obstacle avoidance
seems to be minimal because the path lengths traveled by
the robot are nearly the same for the three approaches in all
considered situations. That means the robot takes almost the
same path in all situations and only adjusts its speed instead
of going round the populated areas, which we attribute to
the static obstacle assumption.

For dense population, our online verification method pro-
vides significant improvements in average velocity for the
flow and cross-flow scenarios. For the anti-flow scenario, the
online verification still enables an average velocity that is a
factor 2 (safety field) or 3 (braking ICS) higher compared
to the other approaches, but an absolute average velocity of
0.15 m/s still leaves significant room for improvement.

Last, but not least, it might be surprising that the Braking
ICS approach often performs worse than the ISO 13482
safety field. We surmise that this is because the safety field
includes a warning field, which just reduces speed but still
enables to robot to move. In contrast, the Braking ICS
approach always stops the robot when it detects a potential
collision, which essentially corresponds to a having safety
field without a warning field.

V. RELATED WORK

We discuss related work that aims at establishing provably
safe motion of mobile robots with respect to a mathematical
model considering moving obstacles, particularly humans.

Full Obstacle Knowledge: The first approaches in this
regard are inevitable collision states (ICS, [17]), non-linear
velocity obstacles [18], and the FD* path planner [19]. All of
these approaches, however, make the assumption of exactly
knowing the future behavior of all obstacles during the
planning horizon, which is unrealistic for pedestrians.

Conservative Obstacle Model: Braking ICS [9] use a
conservative obstacle model where an obstacle may always
move with maximum speed in any direction. This obstacle
model corresponds to the relevant safety norms [5], [4].
Similar to our approach, braking ICS append to each verified
trajectory a braking trajectory for proving passive safety [6].
In contrast to our approach, they compute and check several
possible braking trajectories for the robot. Mitsch et al. [11]
and Zhang et al. [20] use theorem proving for showing
that the DWA enables passively safe motion for differential
drive robots using the same obstacle model as braking ICS.
Likewise, Dabadie et al. [21] assume that obstacles behave in
the worst possible way while proving collision-free motion
based on a reach-avoid problem formulation. Aniculaesi et
al. [22] construct an observer monitor that considers a fixed
braking distance and obstacle velocity for constructing a
safety circle around the robot. Similar to a safeguard, the
monitor triggers a safe braking maneuver if an obstacle enters
the safety circle. As indicated by our evaluation results, such
models with a fixed maximum velocity are conservative and
lead to decreased performance in populated environments.

Motion Primitives: The approaches by Hess et al. [23]
and Majumdar et al. [24] build a library of motion primitives
from which they construct motion plans. These motion plans



include occupancies of the robot along the trajectory and may
be verified against occupancies of obstacles. Such approaches
could be a useful extension to our approach if the online
computation of robot reachsets is too resource demanding.

Occluded Obstacles: The approaches by Alami et al. [25]
and Chung et al. [26] consider (partially) occluded obstacles,
e.g., if humans appear from a crossing corridor. Obstacles
are assumed to appear with maximum speed at any time.
For these cases, our model cannot be applied and the use of
such conservative models is necessary.

Probabilistic Approaches: Probabilistic approaches like
probabilistic ICS [27] and probabilistic collision states [28],
[29] accept a small probability of collision, which is not
acceptable in settings with heavier robots such as intralogis-
tics.

VI. CONCLUSIONS

We present a safety approach for mobile robots that
guarantees passive safety regarding walking pedestrians by
an online verification using reachability analysis. Based on
models of pedestrians and the mobile robot, we compute their
reachable future occupancy at every timestep to determine
whether a braking trajectory leads to a safe stop. In our
evaluation, we demonstrate the validity of the pedestrian mo-
del using reachset conformance testing and discuss possible
improvements. The evaluation of the online verification in
a ROS simulation shows that our approach enables signi-
ficantly improved navigation performance through crowds
compared to standard safety approaches.

Future work focuses on real world applicability of our
approach. Today’s people-tracking algorithms still lack accu-
racy and reliability especially in velocity estimation, which
needs to be the major focus. The effect of sensor occlusion on
our approach is also of interest. Furthermore, additional mo-
delling effort is needed, e.g., to extend our pedestrian model
or to consider other dynamical objects in the environment.
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