Breakthrough: CPS-Security: Towards provably correct distributed attack-resilient control of unmanned-vehicle-operator networks

Minghui Zhu (PI), Peng Liu (co-PI), Pennsylvania State University

Background

Recent advances in the technologies of sensing, communication and computing have been boosting the emergence of new generation cyberCPS to cyber attacks are evidenced by a number of recent accidents.

In 2006, two traffic engineers hacked Los Angeles traffic light control system, lengthened red lights and further snarled traffic.
In 2010, the malware Stuxnet attacked industrial programmable logic controllers and reportedly destroyed almost one-fifth of Iran's nuclear
centrifuge. entrifuges.
In 2011, an American unmanned aerial vehicle (UAV) was brought down by Irian cyber warfare unit.
4. In 2013 , the Industrial Control Systems Cyber Emergency Response Inerability reports about industrial control stems throughout the year in the United States.
model, and individuals remotely hacked into a Jeep Cherokee newest wheels and gas pedals.

These accidents highlight the strong need to guarantee operating function and performance of CPS under cyber attacks.

Project overview

We will develop a distributed attack-resilient control framework to ensure task completion of multiple vehicles despite network attacks and mal ware attacks.
We will develop novel distributed attack-resilient control algorithms namely high-performance control and network-attack control to deal We will develop so ca
malware attacks on vehicles Int-state estimation algorithm to detect attack control algorithm which allows clean vehicleses to avoid the collision with the vehicles compromised by malware.
We will employ a principled systematic evaluation plan to validate the
cost-effectiveness of our proposed distributed attack-cost-effectiveness of our proposed distributed attack-resilient control
framework.

Intrusion detection system

Dynamic system model
$\hat{x}(t)=f\left(x(t), u(t), d^{j(t)}(t), w^{j(t)}(t), j(t), t\right), x(t) \in \mathcal{C}^{j(t)}$ $(x(t), j(t))^{+}=\Omega(x(t), j(t))$, $x(t) \in \mathcal{D}^{j(t)}$

$$
y_{k}=h\left(x_{k}, u_{k}, v_{k}^{j_{k}}, j_{k}, t_{k}\right)+H_{k}^{j_{k}} d_{k}^{j_{k}}
$$

Output decomposition

$$
y_{k}\left\{\begin{array}{l}
z_{1, k}=h_{1}\left(x_{k}, u_{k}, v_{1, k}, t_{k}\right)+H_{1, k} d_{1, k} \\
z_{2, k}=h_{2}\left(x_{k}, u_{k}, v_{1, k}, t_{k}\right)=\cdots+G_{2, k-1} d_{2, k-1} \\
z_{3, k}=h_{3}\left(x_{k}, u_{k}, v_{1, k}, t_{k}\right)
\end{array}\right.
$$

Where $d_{k}=G_{1, k} d_{1, k}+G_{2, k} d_{2, k}$ and directly measureable $d_{1, k}$ and indirectly measureable $d_{2, k}$ are orthogonal.

Nonlinear unknown input, state, and mode estimation

Formal analysis

Filter convergence

There exist constants $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$ such that if $Q_{k} \leq$ $a_{0} I, R_{1, k} \leq a_{1} I, R_{2, k} \leq a_{2} I, R_{3, k} \leq a_{3} I$,
$\varepsilon \leq a_{4}$, then it holds that

1. $E\left[\left\|\tilde{x}_{k \mid k}\right\|^{2}\right]=\alpha_{1} E\left[\left\|\tilde{x}_{0 \mid 0}\right\|^{2}\right] \mathrm{e}^{-\beta_{1} t}+\gamma_{1}$
$E\left[\left\|\tilde{x}_{k \mid k}\right\|^{2}\right]<\infty$ with probability 1
2. $E\left[\|\tilde{x}(t)\|^{2}\right]=\alpha_{2} E\left[\left\|\tilde{x}_{0 \mid 0}\right\|^{2}\right] \mathrm{e}^{-\beta_{2} t}+\gamma_{2}$
$E\left[\|\tilde{x}(t)\|^{2}\right]<\infty$ with probability 1
3. $E\left[\left\|\tilde{d}_{1}(t)\right\|^{2}\right]=\alpha_{3} E\left[\left\|\tilde{x}_{0 \mid 0}\right\|^{2}\right] \mathrm{e}^{-\beta_{3} t}+\gamma_{3}$
4. $E\left[\left\|\tilde{d}_{2}(t)\right\|^{2}\right]=\alpha_{4} E\left[\left\|\tilde{x}_{0 \mid 0}\right\|^{2}\right] \mathrm{e}^{-\beta_{4} t}+\gamma_{4}$

Covariance boundedness
There exist constants \bar{p}, \underline{p} such that $\underline{p} I \leq P_{k \mid k} \leq \bar{p} I$
Collaborative intrusion detection of connected vehicles

Intrusion detection of a single mobile robot

*	Atack Type		Atack Destripton	$\substack{\text { Detection } \\ \text { Reult }}$	
	Whecel controler logic bonb	${ }^{16.0}$		Actuat	0.49
2	Whecel controler logic bonb	4.0		Actulues atack	232
3	Whece jamming	${ }_{5} 5$		Actuluer atack	0.76
4	IpS logic bomb	19.0	Shift $+0.07 m$ on X	Senoro atacke (made 1)	${ }^{0.30}$
5	ITS spofing	26.0	Shift $-0.1 m$ on X Shift 0 m on	Senoso atack (made 1)	0.24
6	Wheel enodetre logic bomb	${ }^{16,0}$		Sersora atack (made 2)	${ }^{0.43}$
7	LiDAR denialo foserice	0.0		Stano atacke (mode 3)	0.23
8	LiDAR senor hlocking	${ }^{7.0}$	faulty distance to the left w	Senoro atack (made 3)	${ }^{0.55}$

References
P. Guo, H. Kim, L. Guan, M. Zhu and P. Liu. VCIDS:

Collaborative intrusion detection of actuator and sensor attacks on connected vehicles. 13 th International Conference on Security
and Privacy in Communication Networks, Oct 201
H. Kim, P. Guo, M. Zhu and P. Liu. On attack-resilient estimation of switched nonlinear cyber-physical systems. 2017 Amer
Control Conference, Seattle, pages: $4328-4333$, May 2017.
S. Yong, M. Zhu and E. Frazzoli. Resilient state estimation against switching attacks on stochastic cyber-physical systems. 2015 IEEE Conference on Decision and Control, Osaka, Japan, pages:5162-5169, Dec 2015. S. Yong, M. Zhu and E. Frazzoli. Switching and data injection
attacks on stochastic cyber-physical systems: Modeling, resilient estimation and attack mitigation. $A C M$ Transactions on Cyber Physical Systems, 2016 Submitted

