Bringing the Multicore Revolution to Satety-Critical Cyber-Physical Systems

'University of North Carolina Chapel Hill

THE UNIVERSITY
of NORTH CAROLINA

Pls: Dr. James Anderson! & Dr. Frank Mueller?

’North Carolina State University N C S ta te U

gt AP REul Students: Nathan Otterness!, Micaiah Chisholm!, Namhoon Kim!, Xing Pan’

Motivation

» Shared hardware like caches & memory introduce timing
unpredictability for real-time systems (RTS).

» Worst-case execution time (WCET) analysis for RTS with shared
hardware resources 1s often so pessimistic that the extra processing
capacity of multicore systems 1s negated.

» Different levels of assurance are required for different criticality
tasks.

Problem

WCET : Way =8
1600 I | |

1 1 1
Loaded, unmanaged HW without sharing - | SRR

Loaded, managed HW with sharing ---3--- |
1400 -”'E"'"”""E""l'i‘l‘a-;-;-;.._.a______ Loaded, managed HW without sharing ---%---

1200

1000

800
Data sharing breaks the

1solation properties.

Execution Time(ms)

600

he Wl
Faa

200 | | | | | | | 5
2 4 6 8 10 12 14

Number of Colors

P
400 ******1
16

» Recent work has shown that, by combining hardware management
and criticality-aware task provisioning, capacity loss can be
significantly reduced when supporting real-time workloads on
multicore platforms.

» Supporting real-world workloads has not been realized due to a
lack of support for sharing among tasks.

Memory Memory
)) I I <:> ; I i T
CPUO | CPU1 | CPU2 | CPU3 CPU4 | CPUS | CPU6 | CPU 7

Shared LLC (L3) cache

Node 0 Node 1

»Shared memory shows timing unpredictability. (1) The latency of

accessing remote node 1s significantly longer than local node. (2)

conflicts between shared-bank accesses result in unpredictable
memory-access latencies.

Solution

» Controller-Aware Memory Coloring:

* Assigned colors to the entire memory space of heap, static, stack,
and 1nstruction segments with locality affinity for controller and
bank-awareness.

* Avoided memory accesses to remote node.
* Reduced conflicts among banks.

> We considered two types of sharing among tasks: shared
buffers and shared libraries.

» Supporting Data Sharing in Mixed-Criticality, Multicore
Systems:
* Implemented two inter-process communication (IPC) mechanisms.

" Producer/consumer buffers (PCBs) and wait-free buffers
(WEFBs)

* Proposed three techniques to mitigate interference due to shared
memory.

= Selective LLC ByPass (SBP): Designate a buffer as uncacheable
and allocate i1t from the Level-C banks.

" Concurrency Elimination (CE): If a buffer 1s shared by two
tasks at Levels A and/or B, assign both tasks to the same core
and allocate the buffer from that core’s bank.

* LLC Locking (CL): Permanently lock a buffer in the LLC.

» Allowing Shared Libraries while Supporting Hardware
Isolation:

* Introduced per-partition library replicas.
* Implemented a system call to replicate shared libraries.

Supporting Data Sharing in Mixed-Criticality —
Solutions & Results

LLC Allocation for locked buffers

< 16 Ways

T CPU 0

¢t [cve] B =—p
4 Colors CPUO
+— Jecvel A =——> b
y
\ /
) CPP 1
¢— [evplB ——>
4 Colors CPU 1 b,
— L[evel A = Level C
! (()&s L LLC (L)
CPU 2 | — —
e | [evE]l B ey
4 Colors CPU 2
1 <+« [evel A = b
1 ICPU 3 b,
¢ Jevel B =———p
4 Colors CPU 3
< [evel A >
v —

Ways locked for buffers

* PCBs are used for tasks of the same criticality.

* WFBs are used for tasks of different criticalities.

* SBP eliminates unpredictable LLC interference at Levels A
and B.

* CE eliminates concurrent interference.

* (L eliminates any DRAM-bank contention but reduces the
LLC size for caching code and local data.

* Partitioning heuristics are proposed to support CE.

* A modified criticality-aware optimization technique based
on linear programming 1s used for applying CL.

Results

1.0

&
oo
T

&
(o)
T

&
I
T

Schedulability

0.2}

U.D LN L] A] | ¢ el
0 1 2 3 4 5 6 7 8 9
Original System Utilization

* We conducted micro-benchmarks and a large-scale
overhead-aware schedulability study.

* CL writing times were 2 to 7% of SBP writing times.

* CE writing times were 50 to 60% of SBP writing times.

* SBP provided schedulability benefits in 60% of scenarios. In
30% of cases, SBP provided schedulability near to Ideal.

* CE and CL provided mild improvement to schedulability in
20% of considered scenarios.

Allowing Shared Libraries while Supporting
Isolation — Solutions & Results

Design and Implementation

Per-partition replicas can allow shared libraries to be used
while preserving 1solation properties.
The first time a shared library 1s used by a task, a set of

replicas 1s created by allocating new pages from the
appropriate DRAM bank.

Library content 1s copied into them.

The page table entries are modified to reference the replica
pages instead of the original ones.

Controller-Aware Memory Coloring — Solutions
& Results

Design and Implementation

e N TN

Core0,1,2,3 Core 8,9, 10, 11 >
(
< | kore 12, 13, 14, 15

Core4,5,6,7

l A

Memory Controll? '@W Controll?

N /A o

Socket 0 Socket 1

——
S—

mMIO>POLOrr

mIO>»POLOrr

* Partition the entire memory space into multiple “colors”
based on memory architecture.

* Assign multiple private memory colors to each real-time
task based on coloring configuration automatically.

* Configure memory coloring policy for entire memory space
(heap, static, stack, and instruction segments).

* Analyze the overhead of controller-aware memory coloring

for real-time task’s WCET.
* Require no change for applications.

Results

msame bank ¢ different bank m different controller m single run

[N
Co

p—
N

p—
S

(Y
NJ

Execution time (sec.)
2
o

8
6
4
2
- B BN BRI BIRINI B
_Qfob‘ AQ" &b\)‘? ép\e"
o° ¥
‘0\,b

* System performance for Parsec code 1s enhanced by our
controller-aware memory coloring scheme since it can
avold remote access penalty and reduce shared bank
conflict.

* The “different controller” of our approach is a policy that
provides single core equivalence.

Conclusions

» Designed controller-aware memory coloring techniques to support

memory coloring allocations for entire memory space.

» Avoided remote memory node access, and reduced bank-level

contention.

» Evaluated on Intel and AMD 16 core platforms and . MX6 quad-

core platform.

» Implemented two IPC mechanisms based on shared memory:.

» Designed three techniques to reduce interference due to sharing

data among tasks.

» Proposed partitioning heuristics and a criticality-aware

optimization technique for allocating shared buffers.

» Proposed per-partition replicas of shared libraries to allow sharing

libraries.

» Conducted micro-benchmarks and large-scale overhead-aware

schedulability studies.

