CAREER: A Hybrid Filtering and Robust Control Framework for Legged Robot Locomotion on Dynamic Rigid Surfaces Yan Gu, Purdue University

Project URL: https://www.nsf.gov/awardsearch/showAward?AWD ID=2046562&HistoricalAwards=false

Research Goal: To create a model-based control framework that produces provably stable legged locomotion on a dynamic rigid surface, drawing upon nonlinear control theory, hybrid systems theory, dynamics, and optimization.

Broader Impact on Society

Legged locomotion on a DRS is a new robot functionality

Applications

Challenge inertia frame Hybrid, time-varying robot dynamics

legged locomotion

Key Innovations

Provably stabilizing control for hybrid time-varying dynamics

Continuous-phase dynamics: $(M\ddot{q} + h(q, \dot{q}) = J^T F + Bu$ if $(t, q, \dot{q}) \notin S$ $J\ddot{q} + \dot{J}\dot{q} = A_{p}(t)$ Landing-impact dynamics (i.e., state-triggered jumps): $\begin{vmatrix} q^{\scriptscriptstyle +} \\ \dot{q}^{\scriptscriptstyle +} \end{vmatrix} = \Delta(q^{\scriptscriptstyle -}, \dot{q}^{\scriptscriptstyle -}, \overset{V_p^+}{p}),$ if $(t, q, \dot{q}) \in S$ **Foot-landing event:** $S \coloneqq \left\{ t, \boldsymbol{q}, \dot{\boldsymbol{q}} \colon h_{SW}(\boldsymbol{t}, \boldsymbol{q}) = 0, \dot{h}_{SW}(\boldsymbol{t}, \boldsymbol{q}, \dot{\boldsymbol{q}}) < 0 \right\}$

(A. Iqbal, Y. Gao, Y. Gu, IEEE/ASME T-MECH, 2020.)

Linear inverted pendulum (LIP) model for DRS locomotion

(A. Iqbal, S. Veer, Y. Gu, under review.)

Robust Locomotion under Uncertain DRS motion

Hybrid, time-varying LIP:

Robust stability conditions: $\|\overline{\mathbf{A}}_{d,n}\|_{\infty} < 1$

(A. Iqbal, S. Veer, Y. Gu, manuscript in preparation.)

Hybrid invariant filtering

constraints

Right-invariant observation:

Identity error jump map:

(Y. Gao, C. Yuan, Y. Gu, IEEE/ASME T-MECH. 2022.)

Scientific Impact

uncertainties

- Revealed hybrid time-varying robot dynamics in DRS locomotion.
- o Expanded leg odometry from static to moving surfaces.
- Created provably stabilizing control methods for DRS locomotion.
- Findings applicable to wheeled/tracked robots and dynamic deformable surfaces.

Outreach and Education

- o Enhanced UML's robotics curriculum.
- o Presented live demos at Boston Robot Block Party and Purdue's Women in Mechanical Engineering Symposium.
- Mentored six underrepresented minority and female undergraduates in robotics research.