
CAREER: Concrete Hardness in Lattice-based Cryptography

Challenge:

- * Concrete security of lattice-based assumptions is not fully understood.
- * Several complexity models are being used, sometime contradicting.
- * Need to derive the crossover point between lattice sieving and enumeration for cryptographic relevant parameters.

Solution:

- * Investigate better lattice reduction strategies.
- * Improve enumeration-based lattice reduction algorithms.
- * Explore memory-efficient sieving variants.
- * More precise quantum resource estimate for lattice reduction.

NSF #2044855: Shi Bai, Florida Atlantic University.

Scientific Impact:

- * Benefit the cryptography community, developers of lattice-based cryptosystems, and ordinary users of post-quantum cryptographic products.
- * Provide guidance on how to choose appropriate parameters to meet specific security levels.

Broader Impact and Broader Participation:

- * Student involvement in research and contribution to cybersecurity workforce.
- * Education Initiatives addressing underrepresented groups and minority students
- * Outreach and science communication events such as crypto summer camps.